Please wait a minute...
材料导报  2021, Vol. 35 Issue (Z1): 628-633    
  高分子与聚合物基复合材料 |
单一刺激响应智能执行器的研究进展
郑钦超1, 江振林1,2,3, 金亮2, 徐晓彤1, 朱敏1,3, 范晓兵2
1 上海工程技术大学化学化工学院,上海 201620
2 无锡索力得科技有限公司,无锡 214253
3 上海工程技术大学,微纳制造先进材料研究中心,上海 201620
Research Progress of Smart Actuator Based on Single Stimulus Response
ZHENG Qinchao1, JIANG Zhenlin1,2,3, JIN Liang2, XU Xiaotong1, ZHU Min1,3, FAN Xiaobing2
1 School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
2 Wuxi Solead Technology Co., Ltd, Wuxi 214253, China
3 Research Center for Advanced Micro- Nano-Fabrication Materials, Shanghai University of Engineering Science, Shanghai 201620, China
下载:  全 文 ( PDF ) ( 3035KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 智能执行器是一类在外部刺激(如光、热、磁、电、湿度、化学等)下具有自我感知、自主响应和自动执行能力的智能材料器件,主要以可逆收缩、弯曲、旋转或跳跃等宏观驱动行为表现。智能执行器具有动态感测并与复杂的周围环境互动的能力,因此它们在诸如人工肌肉、智能纺织品、智能传感器、软机器人等各种不同的领域中都展现出广阔的应用潜力。本文综述了基于单一刺激响应智能执行器的研究进展与应用现状,总结归纳了不同刺激响应的驱动响应介质、制备方法以及性能特征,并简要分析了单一刺激响应智能执行器存在的局限性以及未来的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑钦超
江振林
金亮
徐晓彤
朱敏
范晓兵
关键词:  智能执行器  单一刺激  响应介质  驱动特征    
Abstract: Smart actuators are a kind of intelligent material devices with unique properties such as self-awareness, autonomous response, and automatic execution capabilities, they can achieve driven behaviors of reversible contraction, bending, rotation or jumping in response to single/multi external stimuli (such as light, heat, magnetism, electricity, humidity, and chemical reactions). It is their capability of dynamically sen-sing and interacting with complex ambient environment that make them have wide application potential in different application fields, such as artificial muscles, smart textiles, smart sensors, and soft robots. In this paper, the latest research progress and application status of smart actuators based on a single stimulus response were reviewed, the drive response media, preparation method and performance of different single stimulus responses were summarized, and the limitations of single stimulus response smart actuators and the future direction of development were analyzed.
Key words:  smart actuator    single stimulus    response medium    driving feature
                    发布日期:  2021-07-16
ZTFLH:  TB381  
基金资助: 上海市“扬帆计划”人才项目(19YF1417800)
通讯作者:  jiang06150112@163.com   
作者简介:  郑钦超,现为上海工程技术大学化学化工学院硕士研究生,在江振林讲师的指导下进行研究。目前主要研究领域为光热刺激响应智能执行器的制备。江振林,上海工程技术大学讲师,硕士研究生导师。于2013年和2017年分别获得东华大学硕士和博士学位;自2018年任教于上海工程技术大学化学化工学院,研究方向为功能高分子材料制备与应用、智能可穿戴器件。目前主持国防科工委,上海市扬帆人才等纵向科研项目3项,主持横向科研项目5项,主要参与了2016年“国家科技重点研发计划”项目以及2016年工信部“智能制造”新模式应用项目。获2018年福建省科技进步二等奖1项,2019年上海市“扬帆计划”人才。
引用本文:    
郑钦超, 江振林, 金亮, 徐晓彤, 朱敏, 范晓兵. 单一刺激响应智能执行器的研究进展[J]. 材料导报, 2021, 35(Z1): 628-633.
ZHENG Qinchao, JIANG Zhenlin, JIN Liang, XU Xiaotong, ZHU Min, FAN Xiaobing. Research Progress of Smart Actuator Based on Single Stimulus Response. Materials Reports, 2021, 35(Z1): 628-633.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/IZ1/628
1 Foroughi J, Spinks G M, Aziz S, et al. ACS Nano, 2016,10(10), 9129.
2 Wang K J, Zhu X X. ACS Biomaterials Science & Engineering, 2018, 4(8), 3099.
3 Hu Y, Wu G, Lan T, et al. Advanced Materials, 2015, 27(47), 7867.
4 Cheng H, Zhao F, Xue J, et al. ACS Nano, 2016, 10(10), 9529.
5 Sturm S, Siglreitmeier M, Wolf D, et al. Advanced Functional Materials, 2019, 29(45), 1905996.
6 Beomjune S, Jonghyun H, Minhee L, et al. Science Robotics, 2018,3(14), 2629.
7 Fang C, Yang K, Zhou Q, et al. RSC Advances, 2018, 8(61), 35094.
8 Finkelmann H, Nishikawa E, Pereira G G, et al. Physical Review Letter, 2001, 87(1), 15501.
9 Li M H, Keller P, Lin B, et al.Advanced Materials, 2003, 15(7), 569.
10 Yu Y L, Nakano M, Ikeda T.Nature, 2003, 425(6954), 145.
11 Meng J X, Hou C Y, Zhang Q H, et al. Science China Technological Sciences, 2019, 62(6), 965.
12 Shi K, Liu Z, Wei Y Y, et al. ACS Applied Materials & Interfaces, 2015, 7(49), 27289.
13 Zhang L, Zhang X Q, Li L, et al. Macromolecular Materials and Engineering, 2019, 305(2), 1900718.
14 Kim D, Lee H S, Yoon J, et al. Scientific Reports, 2016, 6, 20921.
15 Marina P C, Sebastiaan A, Michael G D, et al. Advanced Science, 2020, 7(5), 1902842.
16 Leeladhar, Raturi P, Singh J P. Scientific Reports, 2018, 8, 3687.
17 Verpaalen R P, Marina P C, Engels T P, et al. Angewandte Chemie International Edition, 2020, 59(11), 4532.
18 Li S, Tu Y Q, Bai H D, et al. Macromolecular Rapid Communications, 2019, 40(4), 1800815.
19 Xiao P S, Yi N B, Zhang T F, et al. Advanced Science, 2016, 3(6), 1500438.
20 Morales D, Palleau E, Dickey M, et al. Soft Matter, 2014, 10(9), 1337.
21 Lu C, Yang Y, Wang J,et al. Nature Communications, 2018, 9, 752.
22 Hyeon J S, Park J W, Baughman R H, et al. Sensors & Actuators B: Chemical, 2019, 286, 237.
23 Weng M C, Duan Y M, Zhou P D, et al. Nano Energy, 2020, 68, 104365.
24 Lee J A, Li N, Haines C S, et al. Advanced Materials, 2017, 29(31), 1700870.
25 Lin S H, Wang Z K, Chen X Y, et al.Advanced Science, 2020, 7(6), 1902743.
26 Jia T J, Wang Y, Dou Y, et al. Advanced Functional Materials, 2019, 29(18), 1808241.
27 Wang W, Xiang C X, Liu Q Z, et al.Journal Materials Chemistry A, 2018, 45(6), 22599.
28 Wang G, Xia H, Sun X C, et al. Sensors and Actuators B: Chemical, 2018, 255, 1415.
29 Zhang Y Q, Jiang H Y, Li F B, et al. Journal Materials Chemistry A, 2017, 5(28), 14604.
30 Stroganov V, Zakharchenko S, Sperling E, et al.Advanced Functional Materials, 2014, 24(27), 4357.
31 Jiang S H, Liu F Y, Lerch A, et al. Advanced Materials, 2015, 27(33), 4865.
32 Gao P, Li J, Shi Q W. Advanced Fiber Materials, 2019, 1, 214.
33 Mo K W, He M, Cao X D, et al. Journal Materials Chemistry C, 2020, 8(8), 2756.
34 Yang Y, Pei Z Q, Li Z, et al.Journal of the American Chemical Society, 2016, 138(7), 2118.
35 Diller E, Jiang Z, Lum G Z, et al. Applied Physics Letters, 2014,104, 174101.
36 Hu W Q, Lum G Z, Mastrangeli M, et al. Nature, 2018, 554, 81.
37 Lu H J, Zhang M, Yang Y Y, et al. Nature Communications, 2018, 9, 3944.
38 Zheng L, Dong S J, Nie J H, et al. ACS Applied Materials & Interfaces, 2019, 11(45), 42504.
39 Wang Y L, Cui H Q, Zhao Q L, et al. Matter, 2019, 1(3), 626.
40 Li Z, Liu P C, Ji X F, et al. Advanced Materials, 2020, 32(11), 1906493.
41 Hubbard A M, Cui W, Huang Y W, et al. Matter, 2019, 1(3), 674
42 Mu J K, Wang G, Yan H P, et al. Nature Communications, 2018, 9, 590.
43 Zhao Q, Jan H, Joachim D, et al. Advanced Materials, 2015, 27(18), 2913.
44 Zeng H, Zhang H, Ikkala O, et al.Matter, 2020, 2(1), 194.
45 Niu X Z, Zhang M Y, Wu J B, et al. Soft Matter, 2009, 5(3), 576.
46 Yang L, Qi K, Chang L F, et al.Journal of Materials Chemistry B, 2018, 6(31), 5031.
47 Zheng S Y, Shen Y Y, Zhu F B, et al. Advanced Functional Materials, 2018, 28(37), 1803366.
48 Huang L M, Jiang R Q, Wu J J, et al. Advanced Materials, 2016, 29(7), 1605390.
[1] 裴培, 彭勇波. 基于分子动力学的磁流变液微观结构演化模拟与动态聚合分析[J]. 材料导报, 2021, 35(12): 12001-12007.
[2] 秦红玲, 朱合法, 邢志国, 王海斗, 郭伟玲, 黄艳斐. 铁电膜层制备技术研究现状[J]. 材料导报, 2021, 35(1): 1112-1120.
[3] 王玉莲, 邸江涛, 李清文. 人工肌肉纤维的研究进展[J]. 材料导报, 2021, 35(1): 1183-1195.
[4] 杨路, 赵秋莹, 申明霞, 裘进浩. 二氧化锰纤维/聚偏氟乙烯复合材料薄膜的制备及压电性能[J]. 材料导报, 2020, 34(24): 24145-24149.
[5] 李潘玉, 游世辉, 李维, 张圣东, 曾宪任, 柳彬. 磁流变弹性体磁致模量与磁粉颗粒复杂网络分形的关联性分析[J]. 材料导报, 2020, 34(Z2): 67-70.
[6] 李小康, 朱思聪, 张仁刚, 彭顺金. 一种低能带隙结晶完整的D-A型共轭导电聚合物电化学沉积与表征[J]. 材料导报, 2020, 34(20): 20147-20151.
[7] 李兴建, 白宝仕, 刘升, 苗玉杰, 郑朝晖, 丁小斌. 具有相分离结构的PMMA/PEG半互穿网络形状记忆高分子[J]. 材料导报, 2020, 34(2): 2142-2146.
[8] 邹芹, 党赏, 李艳国, 王明智, 熊建超. Fe-基形状记忆合金的研究进展[J]. 材料导报, 2019, 33(23): 3955-3962.
[9] 孙莉, 陈延明. SDS表面修饰纳米ZnO制备及抗菌性能研究[J]. 材料导报, 2019, 33(Z2): 89-91.
[10] 王储, 周珏辉, 周添, 陈亦伦, 宋荟荟. 大功率电磁波照射下超材料多物理场耦合行为[J]. 材料导报, 2019, 33(z1): 84-88.
[11] 李雪云, 王合中. TEMPO氧化法制备纳米几丁质晶须粒子的优化及其产品特性表征[J]. 材料导报, 2018, 32(10): 1597-1601.
[12] 王延杰, 汝杰, 赵东旭, 王田苗, 沈奇, 陈花玲, 朱灯林. 离子聚合物-金属复合材料(IPMC)的电极界面研究进展*[J]. 《材料导报》期刊社, 2017, 31(15): 24-29.
[13] 李锐, 任德均, 陈翔, 王晓杰. 各向同性磁流变橡胶材料的摩擦实验研究*[J]. 《材料导报》期刊社, 2017, 31(2): 64-68.
[14] 张进秋, 赵明媚, 姚军, 李欣, 彭志召. 磁流变液摩擦磨损特性研究进展概述[J]. 材料导报, 2018, 32(17): 2969-2975.
[15] 常胜男, 李津, 刘皓. 基于生物衍生材料的柔性应变/压力传感器的研究进展[J]. 材料导报, 2020, 34(19): 19173-19182.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed