Please wait a minute...
材料导报  2021, Vol. 35 Issue (1): 1183-1195    https://doi.org/10.11896/cldb.20030153
  高分子与聚合物基复合材料 |
人工肌肉纤维的研究进展
王玉莲1,2, 邸江涛1,2, 李清文1,2
1 中国科学院苏州纳米技术与纳米仿生研究所,苏州 215123
2 中国科学技术大学纳米技术与纳米仿生学院,合肥 230026
Recent Progress in Artificial Muscles Fibers
WANG Yulian1,2, DI Jiangtao1,2, LI Qingwen1,2
1 Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
2 School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
下载:  全 文 ( PDF ) ( 10908KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 人工肌肉领域是一个高度跨学科的研究领域,在过去30年中发展迅速。人工肌肉是指一类材料在受到外部刺激如电压、电流、温度、压力、光线、湿度等产生响应,通过自身结构的变化而产生形变的材料,其在软体机器人、假肢、外骨骼及温度调节服等多种应用中具有非常重要的作用。人工肌肉根据其宏观表现形态一般可分为膜状和纤维状。纤维状人工肌肉可将外界刺激导致的体积膨胀通过其螺旋结构转换为纤维径向的转动和轴向的收缩,从而形成旋转驱动和伸缩驱动,其能量转换效率、功率密度以及做功都远高于现有的一些膜状驱动器。另外,纤维状人工肌肉不仅可以完成伸缩、转动等运动,还可通过并股和编织等方式实现更复杂的运动,因其力学性能优异、柔韧性好,且在形式上更接近自然生物肌肉,从而更具优势。人工肌肉纤维还可以以多种不同的形式进行驱动,包括温差驱动、溶剂/气体吸附或渗透驱动、电化学驱动以及气压驱动。
   近年来,基于柔性纤维状材料的人工肌肉的研究取得了很大的进展。人工高分子纤维(如尼龙线)、人工无机纤维(如碳纳米管纤维、石墨烯纤维等)、天然纤维(如蜘蛛丝、蚕丝等)因具有本征柔性的特征,在人工肌肉纤维的原材料上扮演着重要角色。
   本文综述了人工肌肉纤维的研究进展,分别对人工肌肉纤维的驱动材料、工作机制、驱动方式、评价参数及智能织物方面进行了总结,并在最后对人工肌肉纤维领域亟待解决的问题进行了分析与讨论。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王玉莲
邸江涛
李清文
关键词:  人工肌肉  纤维  纱线  驱动器  织物    
Abstract: Artificial muscle research is a highly interdisciplinary field that has been developing rapidly in the past three decades. Artificial muscle refers to a kind of material that will undergo structural change and will consequently be deformed when exposed to external stimuli such as voltage, current, temperature, pressure, light, and humidity. It plays an important role in various applications such as soft robots, artificial limbs, exoske-letons, and temperature-regulating clothing. According to their macroscopic appearance, artificial muscles can be classified into membranous muscles and fibrous muscles, in which the former, through their coiled structure, can convert the external-stimuli-induced volume expansion into radial rotation and axial contraction, and thus can achieve rotational actuation and contractile actuation, respectively, exhibiting obvious superiority to some existing membranous actuators in energy conversion efficiency, power density, and working performance. In addition, artificial muscles yarns can be knitted and woven into sophisticated structures which are capable of performing desired movements far more complicated than contraction and rotation, and which have excellent mechanical properties, good flexibility and similarity to natural biological muscles. Moreover, artificial muscles fibers can be actuated by various approaches such as thermal expansion, solvent/gas adsorption or infiltration, electrochemical double-layer charge injection, or even compressed air (pneumatic actuating).
In recent years, there has been tremendous success in the study of artificial muscles produced from flexible fibrous materials. Artificial polymer fibers, artificial inorganic fibers, and natural fibers, owing to their inherent flexibility, are the main raw materials.
In this review, we highlight the state-of-the-art researches on fibrous artificial muscles from the perspectives of constituent materials, working mechanisms, actuating modes, evaluative parameters, and relevant intelligent fabrics which can be obtained. We also discuss critically but briefly some key obstructive issues in this field.
Key words:  artificial muscle    fiber    yarn    actuator    fabric
               出版日期:  2021-01-10      发布日期:  2021-01-19
ZTFLH:  TB381  
基金资助: 国家自然科学基金(21975281;21773293;21603264)
作者简介:  王玉莲,2017年6月毕业于山东科技大学,获得理学学士学位。现为中国科学院苏州纳米技术与纳米仿生研究所博士研究生,在邸江涛研究员的指导下进行研究。目前主要研究领域为人工肌肉及新型储能器件。
邸江涛,中国科学院苏州纳米技术与纳米仿生研究所研究员、博士研究生导师。毕业于中科学院大学,获得理学博士学位。中国科学院苏州纳米技术与纳米仿生研究所研究员、博士生导师。主要从事于纳米碳基能量存储与转化器件的研究。在Science, PNAS, Advanced Materials, Nano Letters, ACS Nano, Advanced Functional Materials, Small等国内外期刊上发表论文30余篇,被引千余次,应邀为Advanced Materials, Nano Letters, Small等学术期刊审稿。
李清文,中国科学院苏州纳米技术与纳米仿生研究所副所长、研究员、博士研究生导师。2000年获得清华大学化学系博士学位;2001/3和2007/12期间分别在北京大学化学系、英国剑桥大学材料系和美国Los Alamos 国家实验室以博士后和助理研究员身份从事碳纳米管制备与应用研究。2007年底回国加入苏州纳米所。目前主要从事半导体碳纳米管精准制备及碳基电子器件、纳米碳宏观组装体制备及加工、功能复合材料等方面研究。在Nature,Nat. Mater.,Nat. Nanotech., Adv. Mater., JACS, ACS Nano, Small等著名国际期刊上发表学术论文280余篇,被引10 000余次,获得授权发明专利50余项。担任国际著名期刊Mater. Sci. Eng. R Rep、Carbon、Adv. Electron. Mater.等杂志的编辑或编委。
引用本文:    
王玉莲, 邸江涛, 李清文. 人工肌肉纤维的研究进展[J]. 材料导报, 2021, 35(1): 1183-1195.
WANG Yulian, DI Jiangtao, LI Qingwen. Recent Progress in Artificial Muscles Fibers. Materials Reports, 2021, 35(1): 1183-1195.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20030153  或          http://www.mater-rep.com/CN/Y2021/V35/I1/1183
1 Stoychev G V, Ionov L. ACS Applied Materials & Interfaces,2016,8,24281.
2 Spinks G M. Advanced Materials,2020,32,e1904093.
3 Mirvakili S M, Hunter I W. Advanced Materials,2018,30,1704407.
4 Mirfakhrai T, Madden J D W, Baughman R H. Materials Today,2007,10,30.
5 Li D, Paxton W F, Baughman R H, et al. MRS Bulletin,2011,34,671.
6 Kosidlo U, Omastova M, Micusik M, et al. Smart Materials and Structures,2013,22,104022.
7 Kong L, Chen W. Advanced Materials,2014,26,1025.
8 Jang Y, Kim S M, Spinks G M, Kim S J. Advanced Materials,2020,32,e1902670.
9 Haines C S, Li N, Spinks G M, et al. Proceedings of the National Academy of Sciences of the United States of America,2016,113,11709.
10 Foroughi J, Spinks G, Nanoscale Advances,2019,1,4592.
11 Di J, Zhang X, Yong Z, et al. Advanced Materials,2016,28,10529.
12 Behabtu N, Green M J, Pasquali M. Nano Today,2008,3,24.
13 Baughman R H, Cui C, Zakhidov A A, et al. Science,1999,284,1340.
14 Aziz S, Spinks G M. Materials Horizons,2020,7,667.
15 Xiang C Q, Yang H, Sun Z Y, et al. Smart Materials and Structures,2017,26,037004.
16 Wu L J, Chauhan I, Tadesse Y. Advanced Materials Technologies,2018,3,1700359.
17 Mirvakili S M, Hunter I W. Advanced Materials,2017,29,1604734.
18 Aziz S, Foroughi J, Brown H R, et al. Journal of Polymer Science Part B-Polymer Physics,2016,54,1278.
19 Huang L B, Xie X X, Huang H, et al. Sensors and Actuators a-Physical,2020,302.
20 Yang S Y, Cho K H, Kim Y, Song M G, et al. Smart Materials and Structures,2017,26.
21 Mu J, Jung de Andrade M, Fang S, et al. Science,2019,365,150.
22 Yun Y, Shanov V, Tu Y, et al. Nano Letters,2006,6,689.
23 Qiao J, Di J, Zhou S, et al. Small,2018,14,e1801883.
24 Mirfakhrai T, Oh J, Kozlov M, et al. Smart Materials and Structures,2007,16,S243.
25 Lu W, Norris I D, Mattes B R. Australian Journal of Chemistry,2005,58,263.
26 Lee J A, Li N, Haines C S, et al. Advanced Materials,2017,29,7.
27 Lee J A, Kim Y T, Spinks G M, et al. Nano Letters,2014,14,2664.
28 Lee J A, Baughman R H, Kim S J. Nano Convergence,2015,2.
29 Kim K J, Hyeon J S, Kim H, Mun T J, et al. ACS Applied Materials & Interfaces,2019,11,13533.
30 Hyeon J S, Park J W, Baughman R H, et al. Sensors and Actuators B-Chemical,2019,286,237.
31 Foroughi J, Spinks G M, Wallace G G, et al. Science,2011,334,494.
32 Kim S H, Kwon C H, Park K, et al. Scientific Reports,2016,6,23016.
33 Song Y, Zhou S, Jin K, et al. Nanoscale,2018,10,4077.
34 Xu L, Peng Q, Zhu Y, et al. Nanoscale,2019,11,8124.
35 Fennimore A M, Yuzvinsky T D, Han W Q, et al. Nature,2003,424,408.
36 Chun K Y, Hyeong Kim S, Kyoon Shin M, et al. Nature Communications,2014,5,3322.
37 Chen P, Xu Y, He S, et al. Nature Nanotechnology,2015,10,1077.
38 He S, Chen P, Qiu L, et al. Angewandte Chemie-International Edition,2015,54,14880.
39 Jin K, Zhang S, Zhou S, et al. Nanoscale,2018,10,8180.
40 Gu X, Fan Q, Yang F, et al. Nanoscale,2016,8,17881.
41 Lima M D, Hussain M W, Spinks G M, et al. Small,2015,11,3113.
42 Kim H, Moon J H, Mun T J, et al. ACS Applied Materials & Interfaces,2018,10,32760.
43 Sun Y P, Wang Y, Hua C F, et al. Carbon,2018,132,394.
44 Cheng H, Liu J, Zhao Y, et al. Angewandte Chemie-International Edition,2013,52,10482.
45 Cheng H, Hu Y, Zhao F, et al. Advanced Materials,2014,26,2909.
46 Steven E, Saleh W R, Lebedev V, et al, Nature Communications,2013,4,2435.
47 Liu D, Tarakanova A, Hsu C C, et al. Scientific Advances,2019,5,eaau9183.
48 Lin S Y, Zhu J, Li X M, et al. Applied Physics Letters,2017,110,053103.
49 Blackledge T A, Boutry C, Wong S C, et al. Journal of Experimental Biology,2009,212,1981.
50 Agnarsson I, Dhinojwala A, Sahni V, et al. Journal of Experimental Bio-logy,2009,212,1990.
51 Jia T J, Wang Y, Dou Y Y, et al. Advanced Functional Materials,2019,29,1808241.
52 Yang X, Wang W, Miao M. ACS Applied Materials & Interfaces,2018,10,32256.
53 Li Y Y, Leng X Q, Sun J K,et al. Chinese Physics B,2020,29.
54 Maziz A, Concas A, Khaldi A, et al. Scientific Advances,2017,3,e1600327.
55 Zhang X A, Yu S, Xu B, et al. Science,2019,363,619.
56 Cho K H, Song M G, Yang S Y, et al. Electroactive Polymer Actuators and Devices (Eapad),2017,10163.
57 Hwang D, Higuchi T. Ieee-Asme Transactions on Mechatronics,2014,19,1625.
58 Cortez-Vega R, Chairez I, Luviano-Juarez A, et al. Measurement,2018,114,340.
59 Mirvakili S M, Hunter I W. ACS Applied Materials & Interfaces,2017,9,16321.
60 Mirvakili S M, Pazukha A, Sikkema W, et al. Advanced Functional Materials,2013,23,4311.
61 Wang G, Kim S K, Wang M C, et al. ACS Nano,2020,14,632.
62 Mukai K, Asaka K, Wu X L, et al. Applied Physics Express,2016,9.
63 Zhu H W, Xu C L, Wu D H, et al. Science,2002,296,884.
64 Motta M, Li Y L, Kinloch I, et al. Nano Letters,2005,5,1529.
65 Liu L, Ma W, Zhang Z. Small,2011,7,1504.
66 Li Y L, Kinloch I A, Windle A H. Science,2004,304,276.
67 Xu P, Wei B, Cao Z, et al. ACS Nano,2015,9,6088.
68 Choi C, Sim H J, Spinks G M, et al. Advanced Energy Materials,2016,6,1502119.
69 Choi C, Kim S H, Sim H J, et al. Scientific Reports,2015,5,9387.
70 Sun J F, Huang Y, Fu C X, et al. Nano Energy,2016,27,230.
71 Meng Y, Zhao Y, Hu C, et al. Advanced Materials,2013,25,2326.
72 Lima M D, Li N, Jung de Andrade M, et al. Science,2012,338,928.
73 Haines C S, Lima M D, Li N, et al. Science,2014,343,868.
[1] 魏洁, 邵自强. 纳米纤维素材料在功能膜材料中的应用研究进展[J]. 材料导报, 2021, 35(1): 1203-1211.
[2] 郭慧, 刘圆圆, 宋寒, 黄红岩, 刘韬, 徐春晓, 张恩爽, 李文静. 纤维对酚醛气凝胶材料性能的影响[J]. 材料导报, 2020, 34(Z2): 513-515.
[3] 金克霞, 江泽慧, 马建锋, 傅峰, 杨淑敏, 刘杏娥. 纤维素纳米晶基导电复合材料的应用进展[J]. 材料导报, 2020, 34(Z2): 521-524.
[4] 宋寒, 徐春晓, 王湘宁, 刘韬, 苏力军, 孙阔, 郭慧, 李文静. 不同树脂前驱体配比对无机酚醛气凝胶隔热复合材料性能的影响研究[J]. 材料导报, 2020, 34(Z2): 525-527.
[5] 罗大军, 秦舒浩, 伍剑明, 李杨, 高进. 聚丙烯/乙烯-乙烯醇共聚物中空纤维及其硬弹性行为[J]. 材料导报, 2020, 34(Z2): 534-538.
[6] 李晓雨, 李翠玉, 苏瑞. 多巴胺掺杂碳纳米管对芳纶纤维界面性能的影响[J]. 材料导报, 2020, 34(Z2): 562-566.
[7] 薛丽媛, 黄锋林. 纺织品微纤维的研究现状与防治措施[J]. 材料导报, 2020, 34(Z2): 567-571.
[8] 魏凤春, 李明哲, 张晓, 关春龙. 碳纤维增强砂轮基体的有限元模态分析研究[J]. 材料导报, 2020, 34(Z2): 590-593.
[9] 张绍康, 王茹, 徐玲琳, 钟世云, 张国防, 王培铭. 羟乙基甲基纤维素改性水泥砂浆的物理力学性能和孔隙率[J]. 材料导报, 2020, 34(Z2): 607-611.
[10] 卢京宇, 王林, 雍涵, 王佩勋, 李超. 复掺膨胀剂和纤维对混凝土性能的影响[J]. 材料导报, 2020, 34(Z2): 618-622.
[11] 黄青武, 吴越, 宋武林, 丁雨葵. 碳纤维的电纺制备及结构表征[J]. 材料导报, 2020, 34(Z1): 164-168.
[12] 姜宽, 戚承志, 崔英洁, 李太行, 卢真辉. 纤维素等若干因素对仿钢纤维增强透水混凝土性能的影响[J]. 材料导报, 2020, 34(Z1): 189-192.
[13] 吴昊宇, 吴培红, 卞立波, 陶志. 纤维珠链在混凝土抗裂性能设计中的应用研究[J]. 材料导报, 2020, 34(Z1): 193-198.
[14] 周文娟, 侯云芬, 郑东昊. 玻璃纤维对再生骨料板力学性能的影响[J]. 材料导报, 2020, 34(Z1): 216-219.
[15] 于海洋, 李地红, 代函函, 高群. 混杂纤维增强应变硬化水泥基复合材料的弯曲性能研究[J]. 材料导报, 2020, 34(Z1): 229-233.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed