Please wait a minute...
材料导报  2021, Vol. 35 Issue (Z1): 238-241    
  无机非金属及其复合材料 |
混凝土表面热喷涂陶瓷防护涂层的可行性试验研究
石妍1,2, 李家正1,2, 李杨1,2, 韩炜1,2
1 长江科学院,武汉 430010
2 水利部水工程安全与病害防治工程技术研究中心,武汉 430010
Feasibility Test Study of Thermal Spraying Ceramic Protective Coating on Concrete Surface
SHI Yan1,2, LI Jiazheng1,2, LI Yang1,2, HAN Wei1,2
1 Changjiang River Scientific Research Institute,Wuhan 430010, China
2 Research Center of Water Engineering Safety and Disaster Prevention of Ministry of Water Resources,Wuhan 430010, China
下载:  全 文 ( PDF ) ( 3827KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对水泥混凝土长期耐久性防护的迫切需求,将热喷涂技术创新性引入混凝土表面防护领域。通过涂层与基体附着力及粘结面微观结构的初步测试,试验验证了混凝土表面等离子热喷涂陶瓷涂层的可行性。结果表明,通过原材料优选与热喷涂工艺优化,热喷涂过程的瞬间高温对混凝土基体并无损伤。涂层总厚度约0.3 mm,表面结构相对完整均匀,但未能完全封闭基体表面原有的大孔洞。热喷涂层与混凝土基体界面粘接良好,平均附着力达3.88 MPa,超过了基体本身的抗拉强度。涂层依靠物理抓固与基体粘接,微观结构相对致密、无明显空洞或缺陷。研究旨在拓宽热喷涂应用领域及混凝土功能防护涂层材料技术体系,提升混凝土耐磨、防腐及热防护等综合保障能力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
石妍
李家正
李杨
韩炜
关键词:  热喷涂  混凝土  防护涂层  界面结合  微观结构    
Abstract: In response to the urgent need for durability protection of cement concrete, the innovation of thermal spraying technology is introduced into the field of concrete surface protection. Through the preliminary test of coating adhesion and microstructure, the feasibility of plasma thermal spraying ceramic coating on concrete surface was verified by experiment. The results show that the instantaneous high temperature of the thermal spray process will not damage the concrete matrix. The thickness of the coating was 0.3 mm, and its surface was relatively uniform, but it still needs to be sealed twice to ensure the impermeability and frost resistance of the concrete. The thermal spray coating and the concrete matrix have good interface bonding, with an average adhesion of 3.88 MPa, which exceeds the tensile strength of the matrix itself. The coating relied on phy-sical grasping to bond the substrate, whose microstructure was relatively dense without obvious voids or defects. The research aims to broaden the application field of thermal spraying and the technical system of concrete functional protective coating materials, and improve the comprehensive protection capabilities of concrete in terms of wear resistance, corrosion protection and thermal protection.
Key words:  plasma thermal spraying    concrete    protective coating    interface bonding    microstructure
                    发布日期:  2021-07-16
ZTFLH:  TU52  
基金资助: 中央级公益性科研院所基本科研业务费项目(CKSF2019374/CL; CKSF2019394/GC);国家自然科学基金(U2040222;51779019)
通讯作者:  18163559730@163.com   
作者简介:  石妍,长江科学院材料与结构研究所教授级高级工程师,硕士研究生导师。2007年6月毕业于武汉大学水电学院,获工学博士学位。长期致力于水泥基材料基础理论与应用、高性能混凝土制备与性能调控、混凝土开裂机理与控制、工业固体废弃物开发与资源化利用、水工混凝土长期性能演变与耐久性提升等研究。作为项目负责人或主要参与者,完成国家、省部级及水利水电工程的科研项目30余项。合作出版专著2部,参编行业标准10余部,发表论文50余篇,获批国家专利10余项、省部级科技进步奖3项。
引用本文:    
石妍, 李家正, 李杨, 韩炜. 混凝土表面热喷涂陶瓷防护涂层的可行性试验研究[J]. 材料导报, 2021, 35(Z1): 238-241.
SHI Yan, LI Jiazheng, LI Yang, HAN Wei. Feasibility Test Study of Thermal Spraying Ceramic Protective Coating on Concrete Surface. Materials Reports, 2021, 35(Z1): 238-241.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/IZ1/238
1 史才军,汪越,潘晓颖. 材料导报:综述篇,2017,31(7),113.
2 Baltazar L, Rodriguesl M P, Correia J R.Restoration Buildings Monuments, 2016,19(4),267.
3 王媛怡,陈亮,汪在芹.材料导报:综述篇,2016,30(9),81.
4 Zhu Y G, Kou S C, Poon C S. Cement and Concrete Composites, 2013, 35(1),32.
5 Levi M, Ferro C, Regazzoli D,et al. Journal of Materials Science, 2002, 37(22),4881.
6 Khandeparker L, Anil AC.International Journal of Adhesion and Adhesives, 2007, 27(2),165.
7 Li A,Jia M,Mu Y,et al.Macromolecular Chemistry and Physics,2015,216(4), 450.
8 曹学强,热障涂层新材料和新结构, 科学出版社,2017.
9 Li Liu.Deposition and application of electroless Ni-W-P under bump metallisation for high temperature lead-free solder interconnects. Ph.D. Thesis,Loughborough University, 2016.
10 刘英凯,阎殿然,路学成,等.陶瓷,2016(7), 14.
11 陈林,杨冠军,李成新,等. 现代技术陶瓷,2016,37(1),3.
12 毛杰,邓畅光,欧献,等. 热喷涂技术. 2015(2), 16.
13 杜三明,靳俊杰,肖宏滨,等. 表面技术. 2015(6),1.
14 Lee Han-Seung, Park Jin-Ho, Singh Jitendra Kumar, et al. Materials (Basel, Switzerland), 2016,9(9),753.
15 Han-Seung Lee, Jin-ho Park, Jitendra Kumar Singh, et al. Materials, 2020,13(4),895.
16 Wang Y P. Advanced Materials Research, 2014,1015,215.
17 林宗寿,无机非金属材料工学(第4版),武汉理工大学出版社,2014.
18 樊亚男.玻化微珠保温混凝土高温后的基本力学性能试验研究. 博士学位论文,太原理工大学, 2012.
19 姚韦靖,庞建勇. 长江科学院院报, 2017,34(1), 124.
20 吴新灿,陈熙.清华大学学报(自然科学版),2003,43(11),1503.
21 牛博龙. 等离子喷涂氧化铝及其复合涂层的结构和性能研究. 博士学位论文,兰州理工大学,2018.
22 程世杰,高嘉爽,刘爱国,等. 焊接学报, 2006, 27(7),101.
23 虞益军,何亮,包天明.第二十届国际热喷涂研讨会暨第二十一届全国热喷涂年会. 沈阳,2017.
24 霍攀杰,邓龙辉,王进双,等.中国稀土学报,2019,37(6),752.
25 陈哲勇.第十六届国际热喷涂研讨会暨第十七届全国热喷涂年会.洛阳,2013.
26 Ghadami F, Aghdam A S R. A Critical Review. 2019, 678, 42.
27 巫殷伟.有机无机复合防护涂层的制备及其对混凝土防护效果的研究.博士学位论文,华南理工大学,2018.

[1] 李崇智, 王梦宇, 牛振山. 渗透结晶型表面防护剂对混凝土耐久性的影响[J]. 材料导报, 2021, 35(Z1): 247-250.
[2] 周祥, 赵华堂, 李亮, 杜浪, 周双福, 邵瞾, 张晓敏. Si-Mn矿粉粒度对复合胶凝体系水化机理和力学性能的影响[J]. 材料导报, 2021, 35(Z1): 279-283.
[3] 代金芯, 石宵爽, 王清远, 张红恩, 栾晨晨, 张宽裕, 杨富花. 多因素对再生复合掺料基地聚物混凝土抗压强度的影响[J]. 材料导报, 2021, 35(9): 9077-9082.
[4] 倪航天, 黄煜镔. 固化土微观测试评价方法述评[J]. 材料导报, 2021, 35(9): 9168-9173.
[5] 龚建清, 罗鸿魁, 张阳, 龚啸, 谢泽酃, 吴五星, 戴远帆. 减缩剂和HCSA膨胀剂对UHPC力学性能和收缩性能的影响[J]. 材料导报, 2021, 35(8): 8042-8048.
[6] 牛建刚, 许文明, 梁剑. 受压区局部约束塑钢纤维轻骨料混凝土梁的抗弯性能[J]. 材料导报, 2021, 35(8): 8056-8063.
[7] 金琳, 杨永珍, 樊建锋, 许并社. 碳微球表面功能化对镁基复合材料的增强作用[J]. 材料导报, 2021, 35(8): 8093-8098.
[8] 陈宗平, 周济, 王成, 苏炜炜. 高温喷水冷却后圆钢管再生混凝土短柱轴压性能试验及剩余承载力评估[J]. 材料导报, 2021, 35(7): 7033-7041.
[9] 鲁发章, 刘海韬, 黄文质. 8YSZ-Al2O3复合热障涂层研究进展[J]. 材料导报, 2021, 35(7): 7042-7047.
[10] 杨世玉, 赵人达, 曾宪帅, 贾文涛, 靳贺松, 李福海. 用自然纤维增强地聚物材料:综述[J]. 材料导报, 2021, 35(7): 7107-7113.
[11] 刘益良, 苏幼坡, 殷尧, 赵江山, 王硕, 莫宗云. 膨润土改性胶凝材料的研究进展[J]. 材料导报, 2021, 35(5): 5040-5052.
[12] 陈新明, 史玉良, 焦华喆, 靳翔飞, 吴亚闯, 谭毅. 基于搜索锥算法的纤维分布特征及对BFRC的增强机制[J]. 材料导报, 2021, 35(4): 4061-4066.
[13] 张戎令, 郝兆峰, 王起才, 马丽娜, 吕文达, 李文波. 核心混凝土缺陷对钢管混凝土构件徐变影响规律及预测模型研究[J]. 材料导报, 2021, 35(4): 4099-4104.
[14] 卢喆, 王社良, 王善伟, 姚文娟, 刘博, 闫强强. 氯盐侵蚀-冻融循环耦合作用下改性糯米灰浆耐久性能增强方法[J]. 材料导报, 2021, 35(3): 3033-3040.
[15] 史金华, 史才军, 欧阳雪, 刘剑辉, 黄勇, 吴泽媚. 超高性能混凝土受压弹性模量研究进展[J]. 材料导报, 2021, 35(3): 3067-3075.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed