Please wait a minute...
材料导报  2021, Vol. 35 Issue (16): 16172-16177    https://doi.org/10.11896/cldb.20070083
  高分子与聚合物基复合材料 |
路用水性环氧树脂的拉伸强度预测和极值寻优
陈谦, 王朝辉, 傅豪, 樊振通, 刘鲁清
长安大学公路学院,西安 710064
Prediction and Extreme Value Optimization of Tensile Strength of Waterborne Epoxy Resin for Road
CHEN Qian, WANG Chaohui, FU Hao, FAN Zhentong, LIU Luqing
School of Highway, Chang'an University, Xi'an 710064, China
下载:  全 文 ( PDF ) ( 5036KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为实现路用水性环氧树脂力学参数极值寻优,以进一步科学优化其材料组成及配比,基于不同类型原材料自身属性及其掺量的调控,制备了一系列路用水性环氧树脂;以拉伸强度为例,开展了力学参数标定试验并获取了75组有效数据,以此构建了基于小样本数据的传统多元回归方程、典型前馈式及反馈式神经网络等不同预测模型,对比分析了不同模型的拟合效果与预测精度;采用遗传算法对优选的预测模型进行优化,实现了拉伸强度极值寻优功效,回溯确定了原材料各项属性及掺量的最佳取值,为路用水性环氧树脂材料组成及配比的科学优化提供有益借鉴。结果表明:相比五元非线性回归方程和反向传播(Back Propagation,BP)模型,Elman模型的预测误差降低了25.94%~37.5%,具有较好的预测精度和稳定性;综合考虑预测精度和运算速度,推荐采用Elman神经网络(6×4×1)作为路用水性环氧树脂拉伸强度的预测模型;采用遗传算法可快速获得最优拉伸强度和相关材料组成及配比,降低试验成本,但其准确度仍需进一步优化。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈谦
王朝辉
傅豪
樊振通
刘鲁清
关键词:  道路材料  水性环氧树脂  力学参数  拉伸强度  小样本  极值寻优    
Abstract: The purpose is to obtain the extreme value of mechanical parameters of road-use waterborne epoxy resin for further scientific optimization of its material composition and proportion. According to the adjustment of self-properties and proportion of different types of raw materials, a series of road-use waterborne epoxy resins were prepared. Taking tensile strength as an example, the mechanical parameter calibration test was carried out and 75 groups of effective data were obtained. Based on small sample data, different prediction models such as traditional multiple regression analysis, typical feedforward and feedback neural networks were established. The fitting effect and prediction accuracy of different mo-dels were compared and analyzed. Genetic algorithm and particle swarm optimization were used to optimize the selected prediction model, and the optimization effect of tensile strength was realized. The optimum values of property and proportion of raw materials were determined retrospectively. It provided a useful reference for scientific optimization of composition and proportion of road-use waterborne epoxy resin. The results are as follow. Compared with the nonlinear regression equation with five independent variable and back propagation (BP) model, the prediction error of Elman model is 25.94%—37.5% lower. It has significant prediction accuracy and stability. According to prediction accuracy and operation speed, Elman neural network (6×4×1) is recommended as the prediction model of tensile strength of waterborne epoxy resin for road. Genetic algorithm can quickly obtain the optimal tensile strength and its related material composition and proportion, and reduce test cost. But its accuracy still needs to be further optimized.
Key words:  road material    waterborne epoxy resin    mechanical parameters    tensile strength    small sample    extreme value optimization
                    发布日期:  2021-09-07
ZTFLH:  U416.21  
  TB332  
基金资助: 山东省交通运输厅科技计划项目(2018B50);中央高校基本科研业务费专项资金(300102219314;300102219701)
通讯作者:  wchh0205@chd.edu.cn   
作者简介:  陈谦,长安大学公路学院,博士研究生,主要从事绿色道路新材料及新技术的研究,发表学术论文23篇,其中SCI检索16篇;获国家授权专利8项。
王朝辉,长安大学公路学院教授、博士研究生导师,交通运输科技青年英才,美国俄克拉荷马州立大学访问学者,国际稀浆罩面协会专家委员会委员。2008年7月毕业于长安大学,获工学博士学位。同年加入长安大学公路学院道路研究所工作至今,主要从事绿色道路新材料与新技术的开发及应用、道路预防性养护与决策优化技术等领域的研究。以第一作者/通讯作者发表学术论文110余篇,其中SCI/EI 70余篇;获国家授权发明专利70余项。
引用本文:    
陈谦, 王朝辉, 傅豪, 樊振通, 刘鲁清. 路用水性环氧树脂的拉伸强度预测和极值寻优[J]. 材料导报, 2021, 35(16): 16172-16177.
CHEN Qian, WANG Chaohui, FU Hao, FAN Zhentong, LIU Luqing. Prediction and Extreme Value Optimization of Tensile Strength of Waterborne Epoxy Resin for Road. Materials Reports, 2021, 35(16): 16172-16177.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20070083  或          http://www.mater-rep.com/CN/Y2021/V35/I16/16172
1 Chen Q, Wang S, Wang C, et al. Journal of Materials in Civil Enginee-ring, 2021, 33(5), 04021079.
2 Han S, Yao T, Han X, et al. Construction and Building Materials, 2020, 249, 118835.
3 Wang C H, Fu Y, Chen Q, et al. Materials Reports A:Review Papers, 2018, 32(9), 2992(in Chinese).
王朝辉, 傅一, 陈谦, 等. 材料导报:综述篇, 2018, 32(9), 2992.
4 Yang G, Wang C, Wen P, et al. Journal of Materials in Civil Enginee-ring, 2020, 32(3), 04019372.
5 Xiang Q, Xiao F. Construction and Building Materials, 2020, 235, 117529.
6 Li R, Leng Z, Zhang Y, et al. Journal of Cleaner Production, 2019, 235, 1265.
7 Editorial Department of China Journal of Highway and Transport. China Journal of Highway and Transport, 2020, 33(10), 1(in Chinese).
《中国公路学报》编辑部. 中国公路学报, 2020, 33(10), 1.
8 Yang H G, Yang J J, Wu Q Y, et al. Polymer Materials Science and Engineering, 2017, 33(10), 34(in Chinese).
杨红光, 杨建军, 吴庆云, 等. 高分子材料科学与工程, 2017, 33(10), 34.
9 Wang Y L, Hou L J, Liu Z Y, et al. Materials Reports B:Research Papers, 2019, 33(7), 2456(in Chinese).
王玉龙, 侯立杰, 刘志勇,等.材料导报:研究篇,2019,33(7),2456.
10 Yang G, Wang C, Fu H, et al. Journal of Materials in Civil Enginee-ring, 2019, 31(11), 04019265.
11 Wang C, Xiao X, Lu Y, et al. Construction and Building Materials, 2019, 227, 116801.
12 Bangash M, Luzuriaga A, Aurrekoetxea J, et al. Composites Part B:Engineering, 2018, 155, 122.
13 Mao L, Shen H, Han W, et al. Composites Part A:Applied Science and Manufacturing, 2019, 118, 49.
14 Chen Q, Wang C H, Fan Z T, et al. Materials Reports B:Research Papers, 2019, 33(5), 1659(in Chinese).
陈谦, 王朝辉, 樊振通, 等. 材料导报:研究篇,2019,33(5),1659.
15 He C F, Cai Y C, Liu X C, et al. Journal of Mechanical Engineering, 2019, 55(18), 15(in Chinese).
何存富, 蔡燕超, 刘秀成, 等. 机械工程学报, 2019, 55(18), 15.
16 Chen Q, Wang C H, Chen Y Z, et al. Materials Reports B:Research Papers, 2020, 34(7), 14099(in Chinese).
陈谦, 王朝辉, 陈渊召, 等. 材料导报:研究篇,2020,34(7),14099.
17 Wang C J, Zhang T, Luo J H, et al. Chinese Journal of Geotechnical Engineering, 2019(A02), 109(in Chinese).
王才进, 张涛, 骆俊晖, 等. 岩土工程学报, 2019(A02), 109.
18 Ren G, Cao Y, Wen S, et al. Neurocomputing, 2018, 286, 11.
19 Zhang H M, Ba Z L, Wang Y, et al. Journal of Chongqing University of Technology(Natural Science), 2019, 33(11), 148.
张红民, 巴忠镭, 王艳, 等. 重庆理工大学学报(自然科学), 2019, 33(11), 148(in Chinese).
20 Chen Q, Wang C, Sun X, et al. Construction and Building Materials, 2019, 228, 116837.
21 Chen Q, Wang C, Song L. Advances in Civil Engineering, 2020, 2020, 8864766.
[1] 许智鹏, 吉静茹, 刘育红, 强军锋. UV固化脂环族环氧树脂体系的设计及其响应面优化[J]. 材料导报, 2021, 35(14): 14190-14197.
[2] 胡洁琼, 谢明, 陈永泰, 杨有才, 方继恒, 范小通, 李爱坤. Au-Pt-Ni三元催化剂体系纳米相图的研究进展[J]. 材料导报, 2020, 34(Z2): 338-343.
[3] 赵惠. 成型工艺对钨基复合材料界面组织和性能的影响[J]. 材料导报, 2020, 34(Z2): 351-355.
[4] 郝新超. 基于Anderson-Darling检验的复合材料厚板层间拉伸强度性能研究及B基准值[J]. 材料导报, 2020, 34(Z1): 480-485.
[5] 那立艳, 张丽影, 张凤杰, 华瑞年. 固液界面吸附热力学参数的计算[J]. 材料导报, 2020, 34(22): 22030-22035.
[6] 陈谦, 王朝辉, 陈渊召, 李振霞, 郭滕滕, 陈海军. 基于极限学习机的钢桥面板腐蚀评估及预测[J]. 材料导报, 2020, 34(14): 14099-14104.
[7] 梁双强, 陈革, 周其洪, FrankKo. 含缺陷三维编织复合材料拉伸性能试验[J]. 材料导报, 2020, 34(14): 14209-14213.
[8] 张吴欣, 李志恒, 周梅琳, 尹玉, 刘凌云. T-ZnOw/硅橡胶复合材料的非线性电导特性研究[J]. 材料导报, 2020, 34(12): 12169-12172.
[9] 王一雍, 周新宇, 金辉, 梁智鹏. 超声辅助电沉积Ni-Co/Y2O3复合镀层的电化学研究[J]. 材料导报, 2019, 33(6): 1011-1016.
[10] 杨晨光, 赵全, 张茂江, 邢哲, 吴国忠. 聚四氟乙烯微粉对超临界CO2发泡聚丙烯泡孔结构及性能的改善[J]. 材料导报, 2019, 33(21): 3547-3551.
[11] 王玉龙, 侯立杰, 刘志勇, 李世宇, 李卓辉. 水性聚氨酯改性环氧树脂乳液的涂膜性能研究[J]. 材料导报, 2019, 33(14): 2456-2460.
[12] 陈谦, 王朝辉, 樊振通, 侯荣国, 陈姣. 浇注式导电沥青混凝土组合结构热传导效应预估模型[J]. 材料导报, 2019, 33(10): 1659-1665.
[13] 薛雅楠, 韩政学, 李爽然, 张佳宇, 张雪慧, 王兆伟, 贾瑞洁, 王艳芹, 武晓刚, 李晓娜, 陈维毅. 纳米材料掺杂型聚乙烯醇双交联复合水凝胶的力-化学性质[J]. 材料导报, 2019, 33(10): 1745-1751.
[14] 张正一, 韩晓霞, 王朝辉, 孙晓龙. 路用降温涂层在模拟污染工况下的降温性能[J]. CLDB, 2018, 32(8): 1373-1379.
[15] 刘梦梅, 韩 森, 潘 俊, 李 微, 任万艳. 水性环氧树脂乳化沥青在高温、低温和浸水条件下的粘结性能[J]. 《材料导报》期刊社, 2018, 32(10): 1716-1720.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed