Please wait a minute...
材料导报  2020, Vol. 34 Issue (22): 22030-22035    https://doi.org/10.11896/cldb.19080096
  无机非金属及其复合材料 |
固液界面吸附热力学参数的计算
那立艳1, 张丽影1, 张凤杰2, 华瑞年1
1 大连民族大学生命科学学院,大连 116600
2 大连民族大学环境与资源学院,大连 116600
Calculation of Adsorption Thermodynamic Parameters at Solid-liquid Interfaces
NA Liyan1, ZHANG Liying1, ZHANG Fengjie2, HUA Ruinian1
1 College of Life Science, Dalian Minzu University, Dalian 116600,China
2 College of Environment and Bioresources, Dalian Minzu University, Dalian 116600,China
下载:  全 文 ( PDF ) ( 1895KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 目前全球水体污染问题日趋严重,给人类健康及生态环境带来很大危害。吸附分离方法因具有高效、低成本、操作简便和环境友好等特点成为最常使用的污水净化技术。吸附过程中热力学参数(吉布斯自由能变ΔG0、焓变ΔH0及熵变ΔS0)的测定对有效评估吸附性能及预测反应机制具有十分重要的作用,目前文献报道中吸附热力学参数的计算方式非常混乱、结果可靠性较差,主要原因在于对标准平衡常数无量纲特性的理解不够深刻。Langmuir方程是应用最为广泛的等温吸附方程,通过对吸附过程中标准平衡常数(K0)和Langmuir平衡常数(KL)的推导,明确了二者的物理意义及相互转换关系,并对文献报道中存在的问题进行了总结和更正,希望能够对吸附过程热力学参数的获得提供有效的借鉴。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
那立艳
张丽影
张凤杰
华瑞年
关键词:  Langmuir方程  经验平衡常数  标准平衡常数  热力学参数    
Abstract: Water pollution is an increasingly serious problem the world is facing today, causing damage to human health and ecological environment. Adsorption is one of the most commonly used techniques for water purification due to its high efficiency, low cost, easy operation and environmental benign properties. Thermodynamic parameters such as the Gibbs free energy change (ΔG0), enthalpy change (ΔH0) and entropy change (ΔS0) are critical in estimating the performance and predicting the mechanism of an adsorption process. In the adsorption literature, thermodynamic parameters are usually improperly calculated, and the results are unreliable. The reason is the standard equilibrium constant for calculation ΔG0 must be a dimensionless parameter. The Langmuir equation is the most widely used isotherm equation in the adsorption process. By deducing the standard equilibrium constant K0 and the Langmuir equilibrium constant KL, the physical significances of the two parameters were identified and the conversion relationship between them were discussed. Moreover, the existing problems in the literature were summarized and corrected. This study attempts to shed light on the proper estimation of thermodynamic parameters in the adsorption process.
Key words:  Langmuir equation    empirical equilibrium constant    standard equilibrium constant    thermodynamic parameters
               出版日期:  2020-11-25      发布日期:  2020-12-02
ZTFLH:  O6-04  
基金资助: 国家自然科学基金(31770502);辽宁省自然科学基金(201602203;20180550977)
通讯作者:  rnhua@dlnu.edu.cn   
作者简介:  那立艳,大连民族大学生命科学学院,副教授,2012年7月毕业于大连理工大学,获得工学博士学位。2001年至今在大连民族大学生命科学学院工作,主要从事金属有机配位聚合物材料的制备、表征及应用研究。华瑞年,大连民族大学生命科学学院,教授。2003年7月毕业于东北师范大学功能材料研究所,获得理学博士学位。2005年5月至2018年12月在大连民族大学生命科学学院工作,现主要研究方向为稀土掺杂纳米材料、纳米量子点及配位聚合物材料的制备及应用,并在国内外重要期刊发表文章70余篇。
引用本文:    
那立艳, 张丽影, 张凤杰, 华瑞年. 固液界面吸附热力学参数的计算[J]. 材料导报, 2020, 34(22): 22030-22035.
NA Liyan, ZHANG Liying, ZHANG Fengjie, HUA Ruinian. Calculation of Adsorption Thermodynamic Parameters at Solid-liquid Interfaces. Materials Reports, 2020, 34(22): 22030-22035.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19080096  或          http://www.mater-rep.com/CN/Y2020/V34/I22/22030
1 Sharma P, Kaur H, Sharma M, et al. Environmental Monitoring and Assessment, 2011, 183(1-4), 151.2 Chen S H, Zhang J, Zhang C L, et al. Desalination, 2010, 252(1-3), 149.3 Ambashta R D, Sillanpaa M. Journal of Hazardous Materials, 2010, 180(1-3), 38.4 Gupta V K, Saleh T A. Environmental Science and Pollution Research, 2013, 20(5), 2828.5 Li B G, Wang M. Materials Review B:Research Papers, 2018, 32(5),1606 (in Chinese).李北罡,王敏.材料导报:研究篇, 2018, 32(5), 1606.6 Yu F, Cui T R, Chen D X, et al. Materials Review B:Research Papers, 2018, 32(10), 3645 (in Chinese).于飞,崔天然,陈德贤,等.材料导报:研究篇, 2018, 32(10), 3645.7 Lima E C, Hosseini-Bandegharaei A, Moreno-Piraján J C, et al. Journal of Molecular Liquids, 2019, 273, 425.8 Liu Y. Journal of Chemical and Engineering Data, 2009, 54(7), 1981.9 Ghosal P S, Gupta A K. Journal of Molecular Liquids, 2017, 225, 137.10 Fabryanty R, Valencia C, Soetaredjo F E, et al. Journal of Environmental Chemical Engineering, 2017, 5(6), 5677.11 Liu Y. Colloids and Surfaces A, 2006, 274(1-3), 34.12 Gupta V K, Gupta B, Rastogi A, et al. Journal of Hazardous Materials, 2011, 186(1), 891.13 Leechart P, Nakbanpote W, Thiravetyan P, et al. Journal of Environmental Management, 2009, 90(2), 912.14 Langmuir I. Journal of the American Chemical Society, 1916, 38(11), 2221.15 Langmuir I. Journal of the American Chemical Society, 1918, 40(9), 1361.16 Unuabonah E I, Adebowale K O, Olu-Owolabi B I, et al. Hydrometallurgy, 2008, 93(1-2), 1.17 Behvandi A, Safekordi A A, Khorasheh F. Journal of Porous Materials, 2016, 24(1), 165.18 Lu M, Zhang Y M, Guan X H, et al. Transactions of Nonferrous Metals Society of China, 2014, 24(6), 1912.19 Zhou Y F, Meng Z, Wang Z F, et al. Chemical Journal of Chinese Universities, 2018, 39(10), 2253 (in Chinese).周艳芬, 孟哲, 王泽岚, 等. 高等学校化学学报, 2018, 39(10), 2253.20 Tan I A W, Ahmad A L, Hameed B H. Journal of Hazardous Materials, 2009, 164(2-3), 473.21 Ahmad M A, Alrozi R. Chemical Engineering Journal, 2011, 171(2), 510.22 Won S, Kim H, Choi S, et al. Chemical Engineering Journal, 2006(1), 121, 37.23 Xi J H, He M C, Lin C Y. Microchemical Journal, 2011, 97(1), 85.24 Li H C, Cao X Y, Zhang C, et al. RSC Advances, 2017, 7(27), 16273.25 Lingamdinne L P, Choi J S, Yang J K. Acta Chimica Slovenica, 2018, 65(3), 599.26 Lin S, Song Z, Che G, et al. Microporous and Mesoporous Materials, 2014, 193, 27.27 Wang Y, Zhu L, Wang X, et al. Journal of Industrial and Engineering Chemistry, 2018, 61, 321.28 Ahmad A A, Idris A, Hameed B H. Desalination and Water Treatment, 2013, 51(13-15), 2554.29 Ahsan M A, Katla S K, Islam M T, et al. Environmental Technology and Innovation, 2018, 11, 23.30 Wong S, Tumari H H, Ngadi N, et al. Journal of Cleaner Production, 2019, 206, 394.31 Majhi D, Patra B N. Journal of Chemical and Engineering Data, 2018, 63(9), 3427.32 Khankhasaeva S T, Dashinamzhilova E T, Badmaeva S V, et al. Colloid Journal, 2018, 80(4), 453.33 Shen J, Shahid S, Amura I, et al. Synthetic Metals, 2018, 245, 151.34 Zhou P, Yuan H, Peng P Y, et al. Ciesc Journal, 2018, 69(7), 3076 (in Chinese).周鹏, 袁花, 彭平英, 等.化工学报, 2018, 69(7), 3076.35 Cheng S, Zhang L, Xia H. Journal of Porous Materials, 2016, 23(6), 1597.36 Khosravi R, Moussavi G, Ghaneian M T, et al. Journal of Molecular Li-quids, 2018, 256, 163.37 Khan A A, Singh R P. Colloids and Surfaces, 1987, 24(1), 33.38 Fan C, Zhang Y. Journal of Geochemical Exploration, 2018, 188, 95.39 Kooh M R R, Dahri M K, Lim L B L, et al. Applied Water Science, 2018, 8(2), 61.40 Huang Z, Li Y, Chen W, et al. Materials Chemistry and Physics, 2017, 202, 266.41 Hong G, Wang Y. Applied Surface Science, 2017, 423, 800.42 Yang J, Hong G. Journal of Molecular Liquids, 2018, 252, 289.43 Inbaraj B S, Sulochana N. Indian Journal of Chemical Technology, 2002, 9(3), 201.44 Wang G, Su X, Hua Y, et al. Applied Clay Science, 2016, 129, 79.45 Gok C. Journal of Radioanalytical and Nuclear Chemistry, 2014, 301(3), 641.46 Belbachir I, Makhoukhi B. Journal of the Taiwan Institute of Chemical Engineers, 2017, 75, 105.47 Milonjic'S K. Journal of the Serbian Chemical Society, 2007, 72(12), 1363.48 Tran H N, You S J, Chao H P. Journal of Environmental Chemical Engineering, 2016, 4(3), 2671.49 Zhou Q, Gong W, Xie C, et al. Journal of Hazardous Materials, 2011, 185(1), 502.50 Dotto G L, Santos J M N, Rodrigues I L, et al. Journal of Colloid and Interface Science, 2015, 446, 133.51 Bermúdez Y G, Rico I L R, Guibal E, et al. Chemical Engineering Journal, 2012, 183, 68.52 Albadarin A B, Mangwandi C, Al-Muhtaseb A H, et al. Chemical Engineering Journal, 2012, 179, 193.53 Bentiss F, Lebrini M, Lagrenee M. Corrosion Science, 2005, 47(12), 2915.54 Dotto G L, Lima E C, Pinto L A A. Bioresource Technology, 2012, 103(1), 123.55 Zhou X, Zhou X. Chemical Engineering Communications, 2014, 201(11), 1459.56 Anastopoulos I, Kyzas G Z. Journal of Molecular Liquids, 2016, 218, 174.
No related articles found!
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed