Please wait a minute...
材料导报  2020, Vol. 34 Issue (Z1): 596-600    
  高分子与聚合物基复合材料 |
酯化改性抗泥型聚羧酸减水剂的制备及性能研究
纪宪坤1, 汪源1, 汪苏平2, 胡志豪2
1 武汉三源特种建材有限责任公司,430000;
2 武汉源锦建材科技有限公司,430000
Preparation and Application of Esterification Modified Anti-mud PolycarboxylicAcid Water Reducer
JI Xiankun1, WANG Yuan1, WANG Suping2, HU Zhihao2
1 Wuhan Sanyuan Special Building Materials Co., Ltd., Wuhan 430000, China;
2 Wuhan Ujoin Building Material Technology Co., Ltd., Wuhan 430000, China
下载:  全 文 ( PDF ) ( 2930KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 聚羧酸减水剂对骨料含泥量较为敏感,这大大降低了其使用性能和效果,严重影响混凝土的工作性能。通过分子结构设计,将丁二酸酐(MAD)与异戊烯醇聚氧乙烯醚(TPEG)进行酯化反应合成抗泥单体M,然后将其与4-羟丁基乙烯基聚氧乙烯醚(GPEG)、丙烯酰胺(AM)、丙烯酸(AA)等共聚合成具有长支链酯基结构的抗泥型聚羧酸减水剂KNV,并通过红外光谱和核磁共振氢谱对其分子结构进行表征。结果表明:以n(MAD)∶n(TPEG)=3∶1进行酯化反应制备的抗泥单体合成的酯化改性抗泥型聚羧酸减水剂KNV具有较好的分散和保持性能;与市售抗泥型聚羧酸减水剂M12相比,随着泥土含量的增加,KNV的抗泥效果比M12好;不同种类水泥中,加入2.0%掺量的钠基蒙脱土,KNV表现出良好的水泥适应性和抗泥性能;同种水泥中,加入2.0%掺量的不同种类泥土,KNV的抗泥效果以及对泥土种类的适应性均比M12优异;将KNV应用到混凝土中,同样具有优异的抗泥能力,可降低减水剂的掺量和改善混凝土的和易性,提高混凝土的抗压强度。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
纪宪坤
汪源
汪苏平
胡志豪
关键词:  聚羧酸减水剂  酯化改性  抗泥  混凝土    
Abstract: Polycarboxylic acid superplasticizer is sensitive to aggregate mud content, which greatly reduces its performance and effect, and seriously affects the working performance of concrete. A kind of anti-mud polycarboxylic acid water reducer was synthesized by molecular structure design, anti-mud monomer M was synthesized by esterification of succinic anhydride (MAD) with isopentenol polyoxyethylene ether (TPEG), then copolymerized with 4-hydroxybutyl vinyl polyoxyethylene ether (GPEG), acrylamide (AM) and acrylic acid (AA) to form anti-mud polycarboxylic acid water reducer KNV with long branched ester group structure. The results show that the esterification modified anti-mud polycarboxylic acid water reducer KNV prepared by esterification of anti-mud monomer with n(MAD)∶n(TPEG)=3∶1 has good dispersion and retention properties. Compared with the commercially available anti-mud polycarboxylic acid water reducer M12, with the increase of soil content, the anti-mud effect of KNV is better than that of M12. The addition of 2. 0% sodium bentonite to different type of cement shows good cement adaptability and mud resistance.When the same kind of cement was added with 2.0% different kinds of soil, the anti-mud effect and adaptability of KNV to different kinds of soil were better than those of M12. The application of KNV to concrete also has excellent mud resistance, which can reduce the amount of water reducer, improve the workability of concrete and increase the compressive strength of concrete.
Key words:  polycarboxylic acid water reducer    esterified modification    anti-mud    concrete
                    发布日期:  2020-07-01
ZTFLH:  TU53  
作者简介:  纪宪坤,硕士,高级工程师,毕业于重庆大学材料科学与工程专业,中国土木工程学会混凝土质量专业委员会专家委员,中国工程建设标准化协会建筑防水与防护委员会专家委员,武汉源锦建材科技工程技术部长。研究领域为混凝土工程技术、裂缝控制技术、混凝土耐久性及测试技术、尾矿资源化利用技术等。获得华夏建设科学技术一等奖1项,二等奖2项,广东省土木建筑学会二等奖1项,完成专著1部(合著),发表学术论文40余篇。参与多项“十二五”、“十一五”国家科技支撑计划课题,参编《普通混凝土长期性能和耐久性能试验方法标准》(GB/T50082-2009)《混凝土耐久性检验评定标准》(JGJ/T 193-2009)《普通混凝土配合比设计规程》(JGJ 55-2011)《混凝土质量控制标准》(GB 50164-2011)《混凝土用氧化镁膨胀剂》(CBMF19-2017)《混凝土用氧化镁应用技术规程》等国家标准。
引用本文:    
纪宪坤, 汪源, 汪苏平, 胡志豪. 酯化改性抗泥型聚羧酸减水剂的制备及性能研究[J]. 材料导报, 2020, 34(Z1): 596-600.
JI Xiankun, WANG Yuan, WANG Suping, HU Zhihao. Preparation and Application of Esterification Modified Anti-mud PolycarboxylicAcid Water Reducer. Materials Reports, 2020, 34(Z1): 596-600.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2020/V34/IZ1/596
1 Li Y, Zheng X, Wu K,et al. Advances in Cement Research,2016,28,344.
2 Lei L,Plank J. Cement and Concrete Research,2014,60,1.
3 刘斌.含泥量对掺聚羧酸盐减水剂混凝土性能的影响.硕士学位论文,西安建筑科技大学,2015.
4 Chen G,Lei J,Du Y,et al. Arabian Journal of Chemistry,2018,11,747.
5 熊旭峰,邵强,钟开红,等.新型建筑材料,2018(12),52.
6 Tan H,Gu B,Ma B,et al. Applied Clay Science,2016,129,40.
7 王子明,吴昊,徐莹,等.建筑材料学报,2014,17(2),234.
8 Xu H, Sun S, Yu Q,et al. Polymer Composites,2016,39(3),755.
9 姚恒,田兴,柯凯.粉煤灰综合利用,2019(3),18.
10 Lei L, Plank J. Industrial & Engineering Chemistry Research,2014,53(3),1048.
11 谭洪波,李信,马保国,等.武汉理工大学学报,2015,37(11),26.
12 杨月青,唐新德,李敏,等.新型建筑材料,2018(8),28.
13 詹洪,王友奎,赵帆,等.混凝土,2015(3),102.
14 陈国新,祝烨然.混凝土,2013(4),87.
15 Xing G, Wang W, Xu J. RSC Advances,2016,6,921.
16 钟丽娜.新型建筑材料,2018(5),41.
17 邵强,孙申美,林春,等.新型建筑材料,2016(10),9.
18 田森.抗泥型聚羧酸减水剂的合成与性能研究.硕士学位论文,哈尔滨工业大学,2018.
19 张光华,王爽,张策,等.硅酸盐学报,2019,47(2),178.
20 Lei L, Plank J. Cement & Concrete Research,2012,42(10),1299.
21 王方刚,陆加越,刘建忠,等.建筑材料学报,2017,20(4),556.
22 罗源兵.聚羧酸减水剂的抗泥改性研究.硕士学位论文,重庆大学,2017.
[1] 姜宽, 戚承志, 崔英洁, 李太行, 卢真辉. 纤维素等若干因素对仿钢纤维增强透水混凝土性能的影响[J]. 材料导报, 2020, 34(Z1): 189-192.
[2] 李义强, 李智, 赵斌, 刘磊, 蓝群力, 张新天, 卞立波. 多孔质混凝土植被恢复组合结构与材料性能研究[J]. 材料导报, 2020, 34(Z1): 199-202.
[3] 卢喆, 冯振刚, 姚冬冬, 纪鸿儒, 秦卫军, 于丽梅. 超高性能混凝土工作性与强度影响因素分析[J]. 材料导报, 2020, 34(Z1): 203-208.
[4] 储腾跃, 李矜, 赵学超, 董兵海, 李磊. 高流态高强混凝土收缩性能改善研究[J]. 材料导报, 2020, 34(Z1): 213-215.
[5] 周文娟, 谢谦, 赵磊. 再生微粉对聚羧酸减水剂的吸附性能研究[J]. 材料导报, 2020, 34(Z1): 246-248.
[6] 伍勇华, 祝婷, 党梓轩, 李莹, 李国新. 中和与否对聚羧酸减水剂性能的影响及机理分析[J]. 材料导报, 2020, 34(Z1): 592-595.
[7] 汪知文, 李碧雄. 稻壳灰应用于水泥混凝土的研究进展[J]. 材料导报, 2020, 34(9): 9003-9011.
[8] 丛卓红, 陈恒达, 郑南翔, 周晚君. 水泥混凝土路面纹理的研究进展[J]. 材料导报, 2020, 34(9): 9110-9116.
[9] 李田雨, 刘小艳, 张玉梅, 熊传胜, 曹文凯, 李伟华. 海水海砂制备活性粉末混凝土的碳化机理[J]. 材料导报, 2020, 34(8): 8042-8050.
[10] 戈雪良, 陆采荣, 梅国兴. 降温速率对混凝土冻结应力的影响及机理研究[J]. 材料导报, 2020, 34(8): 8051-8057.
[11] 王家滨, 许云喆, 张凯峰, 王斌. 硝酸侵蚀/碳化交替作用下衬砌喷射混凝土的中性化研究及预测模型[J]. 材料导报, 2020, 34(8): 8058-8063.
[12] 杨海涛, 刘娟红, 纪洪广, 周昱程. 利用优化的水渗透试验研究SAPs的裂缝愈合机理[J]. 材料导报, 2020, 34(8): 8188-8193.
[13] 白亚飞, 王栋民. 公路混凝土用低坍落度塑性混凝土和无坍落度干硬性混凝土用引气剂的
国内外研究进展
[J]. 材料导报, 2020, 34(7): 7099-7106.
[14] 白静静, 王敏, 史才军, 沙胜男, 向顺成, 周贝贝, 马一菡. 降粘性聚羧酸减水剂的设计合成及在低水胶比水泥-硅灰体系中的作用[J]. 材料导报, 2020, 34(6): 6172-6179.
[15] 武斌, 安晓鹏, 史才军, 魏子易, 元强. 混凝土流变特性对其稳定性及浇筑后外观质量的影响[J]. 材料导报, 2020, 34(4): 4043-4048.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed