Please wait a minute...
材料导报  2020, Vol. 34 Issue (Z1): 370-374    
  金属与金属基复合材料 |
铁/镍元素粉末的选区激光熔化过程扩散动力学研究
李宸庆1, 侯雅青1,2, 苏航1,2, 潘涛1,2, 张浩3
1 钢铁研究总院工程用钢所,北京 100081;
2 北京钢研新材科技有限公司,北京 100081;
3 重庆安德瑞源科技有限公司,重庆 401329
Diffusion Dynamic Analysis on Selective Laser Melting Process of Fe/Ni Powder
LI Chenqing1, HOU Yaqing1,2, SU Hang1,2, PAN Tao1,2, ZHANG Hao3
1 Department of Structural Steels Central Iron & Steel Research Institute, Beijing 100081, China;
2 Beijing MatDao Technology Co.,Ltd., Beijing 100081, China;
3 Chongqing Adrayn Technology Co.,Ltd., Chongqing 401329, China
下载:  全 文 ( PDF ) ( 6773KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 异质粉末3D打印,即采用纯元素或简单合金粉末混合进行3D打印,可以省略冶炼和制粉流程,在打印中直接完成冶金过程,相比传统基于均质金属粉末的3D打印,该法流程缩短、粉末种类减少,具有重要的发展价值。本文针对选区激光熔化(SLM)打印过程,提出了异质金属粉末直接3D打印冶金的技术原理,并以Fe基合金为例分析了各类元素的扩散动力学。计算表明,通过提高SLM脉冲峰值温度、延长熔态时长、减小合金粉末粒径、增加后续高温热处理等方法可以大幅提高打印过程中的元素扩散效率,实现成分均匀化。SEM和EDS实验结果显示,提高SLM脉冲峰值温度、延长熔态时长能有效提高扩散效率,与计算结果吻合。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李宸庆
侯雅青
苏航
潘涛
张浩
关键词:  激光选区熔化  扩散动力学  异质粉末  3D打印    
Abstract: Heterogeneous powder 3D printing technology uses mixed powder of pure element or simple alloy as raw material. It can omit the melting and milling process, complete the metallurgical process directly during printing. Compared with traditional 3D printing method, it can be one of the most important directions in the future as the production process is greatly shortened and the type of metal powder is dramatically reduced. This article proposed the technical principal on SLM process of heterogeneous metal powder. The feasibility of the technology was confirmed by diffusion simulation of Fe-based alloy systems during their molten state. The results show that the improvement of element diffusion efficiency and the composition homogenization can be achieved substantially by increasing the laser peak temperature, extending the melting time, reducing the size of metal powder and adding a subsequent high-temperature heat treatment. The results of SEM and EDS experiments show that the diffusion efficiency can be improved significantly by increasing the laser peak temperature and extending the melting time, which is consistent with the calcula-ted results.
Key words:  selective laser melting    diffusion dynamics    heterogeneous powder    3D printing
                    发布日期:  2020-07-01
ZTFLH:  TB3  
作者简介:  李宸庆,2017年6月毕业于上海交通大学,获得工程学士学位。于2017年9月至今在钢铁研究总院学习,主要从事低合金钢3D打印热动力学计算的研究;苏航,1969年生,钢铁研究总院教授级高工,博士研究生导师,享受国务院政府特殊津贴。1997年获得中国科学院上海冶金研究所材料物化专业博士学位。现任钢铁研究总院工程用钢所副所长,中国金属学会计算材料分委会常务理事等。其团队研究涵盖军工舰船、海工装备、石化容器、高速铁路、电力电网等领域的专用材料,同时致力于材料热力学、材料动力学模拟、材料数据库等相关技术的研究。先后主持和参加了30余项国家973、863、支撑计划以及国防军工配套项目的研究,获得冶金科技进步一等奖2项、二等奖1项,全军科技进步三等奖1项;出版专著2部,软件著作权5项,专利十余项,发表论文50余篇。
引用本文:    
李宸庆, 侯雅青, 苏航, 潘涛, 张浩. 铁/镍元素粉末的选区激光熔化过程扩散动力学研究[J]. 材料导报, 2020, 34(Z1): 370-374.
LI Chenqing, HOU Yaqing, SU Hang, PAN Tao, ZHANG Hao. Diffusion Dynamic Analysis on Selective Laser Melting Process of Fe/Ni Powder. Materials Reports, 2020, 34(Z1): 370-374.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2020/V34/IZ1/370
1 Santos E C, Shiomi M, Osakada K, et al. International Journal of Machine Tools & Manufacture,2006,46(12-13),1459.
2 Poprawe Reinhart,Schulz Wolfgang. Riken Review,2003,50,3.
3 Nie B, Yang L, Huang H, et al. Applied Physics A,2015,119(3),1075.
4 ASTM F3049-14. Standard guide for characterizing properties of metal powders used for additive manufacturing processes, West Conshohocken, PA,2014.
5 Kruth J P, Froyen L, Van Vaerenbergh J, et al. Journal of Materials Processing Technology,2003,149(1),616.
6 鲁中良,史玉升,刘锦辉,等.华中科技大学学报(自然科学版),2007(8),93.
7 季宪泰,陈柯宇,周燕,等.激光与光电子学进展,2018,55(9),254.
8 Zhang B C, Nour-Eddine Fenineche, Liao H L, et al. Journal of Mate-rials Science & Technology,2013,29(8),757.
9 Zhang B C, Chen J, Christian Coddet. Journal of Materials Science & Technology,2013,29(9),863.
10 Du Y, You X Y, Qiao F B, et al. Journal of Materials Processing Technology,2018,261,74.
11 文舒,董安平,陆燕玲,等.金属学报,2018,54(3),393.
12 Mirani H V M, Harthoorn R, Zuurendonk T J, et al. Physica Status Solidi A,1975,29(1),115.
13 Philibert J. Atom movements-diffusion and mass transport in solids, De Physique, Les Ulis, France,1991.
14 He M G, Zhang S, Zhang Y, et al. Optics Express,2015,23(9),10884
15 Anders Engström, Lars Höglund, John Ågren. Metallurgical & Materials Transactions A,1994,25(6),1127.
16 Helander T, Agren J. Metallurgical & Materials Transactions A,1997,28(2),303.
17 Yin H, Felicelli S D. Acta Materialia,2009,58(4),1455.
18 Trevor Keller, Greta Lindwall, Supriyo Ghosh, et al. Acta Materialia,2017,139,244.
19 魏雷,林鑫,王猛,等.航空制造技术,2017(13),16.
20 高超峰,余伟泳,朱权利,等.粉末冶金工业,2017,27(5),53.
21 Christopher Pleass, Sathiskumar Jothi. Additive Manufacturing,2018,24,419.
22 陈莹莹,肖志瑜,李上奎,等.粉末冶金工业,2018,28(4),56.
23 Kaplanskii Y Y, Sentyurina Z A, Loginov P A, et al. Materials Science & Engineering A,2019,743,567.
24 Kim M T, Oh O Y. Journal of Alloys and Compounds,2009,477(1-2),0.
25 He W, Wei Q, Liu K, et al. Ceramics International,2013,39(8),9683.
26 Wang Z, Shi Y, He W, et al. Ceramics International,2015,41(2),3245.
[1] 仪登豪, 冯英豪, 张锦芳, 李晓峰, 刘斌, 梁敏洁, 白培康. 3D打印石墨烯增强复合材料研究进展[J]. 材料导报, 2020, 34(9): 9086-9094.
[2] 邹田春, 欧尧, 祝贺, 秦嘉徐. 激光选区熔化AlSi7Mg合金的微观组织和力学性能[J]. 材料导报, 2020, 34(10): 10098-10102.
[3] 王海霞, 段光远, 朱吉萌, 王加稳, 乔春梅. 基于自由基聚合的3D打印材料变形情况表征[J]. 材料导报, 2019, 33(Z2): 573-576.
[4] 周春波, 张有智, 张岳, 王煊军. 聚乙烯基石墨烯复合多孔球形材料的制备及性能表征[J]. 材料导报, 2019, 33(z1): 453-456.
[5] 安晓龙, 吕云卓, 覃作祥, 陆兴. 同轴送粉激光3D打印光粉耦合作用以及熔池气液界面追踪数值模拟的研究进展[J]. 材料导报, 2019, 33(1): 167-174.
[6] 朱彬荣, 潘金龙, 周震鑫, 张洋. 3D打印技术应用于大尺度建筑的研究进展[J]. 材料导报, 2018, 32(23): 4150-4159.
[7] 安晓龙, 吕云卓, 覃作祥, 陆兴. 同轴送粉金属激光3D打印熔池流动、成分分布以及组织生长数值模拟的研究进展[J]. 材料导报, 2018, 32(21): 3743-3753.
[8] 杨建明, 汤阳, 顾海, 刘永加, 黄大志, 陈劲松. 3D打印制备多孔结构的研究与应用现状[J]. 材料导报, 2018, 32(15): 2672-2683.
[9] 魏明炜, 陈岁元, 郭快快, 梁京, 刘常升. EIGA法制备激光3D打印用TA15钛合金粉末*[J]. 《材料导报》期刊社, 2017, 31(12): 64-67.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed