Please wait a minute...
材料导报  2020, Vol. 34 Issue (Z1): 29-33    
  无机非金属及其复合材料 |
ITO靶材第二相In4Sn3O12的结构及其对靶材性能的影响
谢斌1, 杨硕1, 王伟宁2, 郗雨林1
1 中国船舶重工集团公司第七二五研究所,洛阳 471023;
2 大连理工大学材料科学与工程学院,大连 116024
Microstructure of the Second Phase In4Sn3O12 and Its Effect on Properties ofITO Target Materials
XIE Bin1, YANG Shuo1, WANG Weining2, XI Yulin1
1 Luoyang Ship Material Research Institute, Luoyang 471023, China;
2 School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
下载:  全 文 ( PDF ) ( 8772KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以自制的纳米ITO气化粉为原料,采用注浆成型工艺制备了不同SnO2含量的ITO靶材,并采用不同烧结温度对SnO2含量为10%(质量分数)的靶材进行了烧结,通过SEM分析了不同SnO2含量ITO靶材的组织及第二相在靶材中的数量、形貌、分布。结果表明,在1 575 ℃烧结温度下,随着SnO2含量的增加,靶材晶粒得到细化,晶界交汇处第二相数量明显增多;当烧结温度提高至1 600 ℃时,晶界处第二相发生分解,并向母相中转移。采用王水对1 575 ℃烧结的SnO2含量为10%的靶材进行腐蚀,提取第二相,并通过EDS、XRD、TEM、TGA分析了第二相的组分、物相结构及热重情况。研究表明,10% SnO2含量ITO靶材晶界交汇处形成的第二相为六方结构的In4Sn3O12,且靶材的氧含量与In4Sn3O12有关。通过对不同SnO2含量ITO靶材在密度、电阻率和热扩散系数方面的分析,间接研究了第二相对靶材性能的影响,发现SnO2含量的增加有利于靶材密度的提高,同时使靶材电阻率增大、氧含量增高、热扩散系数减小。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谢斌
杨硕
王伟宁
郗雨林
关键词:  ITO靶材  第二相  In4Sn3O12  氧含量    
Abstract: ITO target materials with different SnO2 content were prepared by injection molding using self-made nano ITO gasification powder as raw mate-rial. The target materials with 10% (mass fraction) SnO2 content were sintered at different sintering temperatures. The microstuctuer of ITO target materials with different SnO2 content and the quantity, morphology and distribution of the second phase in the target materials were analyzed by SEM. The results show that at the sintering temperature of 1 575 ℃, with the increased SnO2 content, the target grains were refined, and the number of the second phase at the intersection of grain boundaries was significantly increased; as the sintering temperature increased to 1 600 ℃, the second phase at the boundary decomposed and transfered to the parent phase. The target with 10% SnO2 content sintered at 1 575 ℃ was corroded by aqua regia to extract the second phase. The composition, phase structure and thermogravimetry of the second phase were analyzed by EDS, XRD, TEM and TGA. The research indicates that the second phase formed at the intersection of grain boundary of ITO target with 10% SnO2 content is the hexagonal In4Sn3O12 phase, and the oxygen content of target is related to In4Sn3O12. Based on the analysis of density, resistivity and thermal diffusivity of ITO target with different SnO2 content, the influence of the second phase on the target performance was indirectly studied. It was found that the increase of SnO2 content was beneficial to the increase of target density, while the increase of target resistivity, the increase of oxygen content and the decrease of thermal diffusivity.
Key words:  ITO targets    the second phase    In4Sn3O12    oxygen content
                    发布日期:  2020-07-01
ZTFLH:  TB383  
基金资助: 国家稀土稀有金属新材料研发和产业化专项资助(20121743)
作者简介:  谢斌,西安科技大学硕士毕业,中国船舶重工集团公司第七二五研究所工程师,主要从事纳米粉体及功能陶瓷制备方面的研究;郗雨林,中国船舶重工集团公司第七二五研究所研究员,西安交通大学博士毕业。主要从事功能陶瓷及金属基复合材料制备方面的研究。
引用本文:    
谢斌, 杨硕, 王伟宁, 郗雨林. ITO靶材第二相In4Sn3O12的结构及其对靶材性能的影响[J]. 材料导报, 2020, 34(Z1): 29-33.
XIE Bin, YANG Shuo, WANG Weining, XI Yulin. Microstructure of the Second Phase In4Sn3O12 and Its Effect on Properties ofITO Target Materials. Materials Reports, 2020, 34(Z1): 29-33.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2020/V34/IZ1/29
1 Leung W S, Chan Y C, Lui S M. Microelectronic Engineering,2013,101,1.
2 Lippens P, Büchel M, Chiu D, et al. Thin Solid Films,2013,532,94.
3 Nam E, Kang Y H, Son D J, et al. Surface & Coatings Technology,2010,205,S12.9
4 Sunde T O L, Einarsrud M A, Grande T. Journal of the European Cera-mic Society,2013,33(3),565.
5 Cho S H, Kang Y M, Lee J R, et al. Journal of the Korean Physical Society,2009,54(3),1315.
6 Liu C, Liu J, Wang Y. Rare Metals,2011,30(2),126.
7 Utsumi K, Matsunaga O, Takahata T. Thin Solid Films,1998,334(1),30.
8 Medvedovski E, Alvarez N A, Szepesi C J. Institute of Materials, Minerals and Mining,2013,112(5),243.
9 Kim S M, Seo K H, Lee J H, et al. Journal of the European Ceramic Society,2006,26(1-2),73.
10 Nakashima K, Kumahara Y. Vacuum,2002,66(3-4),221.
11 Xie B, Liu G P, Li L T et al. Rare Metal Materials and Engineering,2018,48(7),3982.
12 González G B, Mason T O, Quintana J P, et al. Applied Physics,2004,96(7),3912.
13 Omata T, Kita M, Okada H et al. Thin Solid Films,2006,503(1-2),22.
14 Heward W J, Swenson D J. Journal of Materials Science,2007,42(17),7135.
15 Diamandescu L, Tarabasanu-Mihaila D, Feder M, et al. Materials Che-mistry and Physics,2014,143(3),1540.
16 Kemmler J A, Pokhrel S, Birkenstock J, et al. Sensors and Actuators B,2012,161(1),740.
17 González G B, Okasinski J S, Mason T O, et al. Journal of Applied Phy-sics,2008,104,043520.
[1] 甘杰, 何林, 李强, 杨晓峰, 范辉. 93W-5Ni-2Fe高密度钨合金冲击韧性关键影响因素研究[J]. 材料导报, 2020, 34(Z1): 304-306.
[2] 姚三成, 丁毅, 赵海, 江波, 刘学华, 方政. 中碳微合金钢的断裂韧性与显微组织的关系[J]. 材料导报, 2020, 34(Z1): 452-456.
[3] 闫敬明, 黎平, 左孝青, 周芸, 罗晓旭. Al-Ti-B晶粒细化剂研究进展:细化机理及第二相控制[J]. 材料导报, 2020, 34(9): 9152-9157.
[4] 童灯亮, 易幼平, 黄始全, 何海林, 郭万富, 王并乡. 变形温度对2A14铝合金组织与力学性能的影响[J]. 材料导报, 2020, 34(6): 6100-6104.
[5] 谭雅琴, 王晓明, 朱胜, 乔珺威. 高熵合金强韧化的研究进展[J]. 材料导报, 2020, 34(5): 5120-5126.
[6] 苏小虎, 栗卓新, 马思鸣, 李红, 张天理, KIM Hee Jin. 氧含量及夹杂物对高强钢金属芯焊丝E120C-K4熔敷金属冲击韧性的影响[J]. 材料导报, 2020, 34(11): 11049-11052.
[7] 袁玖玮, 徐建明, 周罗增, 张玉凤, 张嘉颖, 张晓娟, 周文礼, 彭里其, 徐燕, 高湉. 高温超导块材第二相掺杂的研究进展[J]. 材料导报, 2019, 33(Z2): 65-69.
[8] 程亮, 张鹏程. 事故容错热导率增强型UO2核燃料的研究进展[J]. 材料导报, 2019, 33(11): 1787-1792.
[9] 张昊, 胡强, 张少明, 盛艳伟, 赵新明, 贺会军. 水雾化法制备FeSiCr软磁合金粉末研究[J]. 材料导报, 2018, 32(20): 3590-3594.
[10] 薛克敏, 薄冬青, 王薄笑天, 刘梅, 李萍. 7A60铝合金ECAP过程第二相演化行为及机理[J]. 材料导报, 2018, 32(18): 3195-3198.
[11] 兰宇, 李兵, 周子皓, 张以纯, 尹传强, 魏秀琴, 周浪. 表面氧含量对高纯硅粉高温氮化行为的影响[J]. 材料导报, 2018, 32(16): 2719-2722.
[12] 何培, 姚伟志, 吕建明, 高博, 李先容. ODS钢的抗辐照设计及纳米第二相粒子表征的研究进展[J]. 《材料导报》期刊社, 2018, 32(1): 34-40.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed