Please wait a minute...
材料导报  2020, Vol. 34 Issue (Z1): 224-228    
  无机非金属及其复合材料 |
钙质砂水泥砂浆力学性能试验研究及微观结构分析
李文杰1, 陈宜虎2, 范理云2, 吕海波1,2
1 桂林理工大学土木与建筑工程学院,桂林 541004;
2 贺州学院建筑工程学院,贺州 542899
Experimental Study and Microstructure Analysis of Calcareous SandCement Mortar
LI Wenjie1, CHEN Yihu2, FAN Liyun2, LYU Haibo1,2
1 College of Civil Engineering and Architecture, Guilin University of Technology, Guilin 541004, China;
2 Architectural and Civil Engineering Institute, Hezhou University, Hezhou 542899, China
下载:  全 文 ( PDF ) ( 5707KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为探究新型建筑材料钙质砂的工程性质,对钙质砂水泥砂浆进行了力学性能试验,研究了水灰比、养护条件、养护龄期、级配对其抗压、抗折强度的影响,采用SEM对钙质砂颗粒及水泥砂浆的微观结构进行分析,建立了钙质砂细度模数与吸水率之间的关系曲线。结果表明:钙质砂水泥砂浆早期强度比标准砂稍高,但其28 d强度低于标准砂砂浆;养护初期海水养护试样强度较高,而养护后期淡水养护试样强度明显大于海水养护试样强度。SEM结果显示,水泥水化后的细粒组(GS1)颗粒表面孔隙被C-S-H、Ca(OH)2和C-A-H水化产物胶结良好,粗粒组(GS3)颗粒间仍可以产生较好的咬合力,而中粒组(GS2)因不存在这些优势所以强度小于GS1和GS3。钙质砂吸水率比标准砂高5%~6%,吸水率越低,强度越高;钙质砂细度模数与吸水率为二次多项式关系,在考虑吸水率的情况下,对钙质砂水泥砂浆的抗压强度计算进行了修正。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李文杰
陈宜虎
范理云
吕海波
关键词:  钙质砂  水泥砂浆  力学性能  微观结构  吸水率    
Abstract: In order to explore the engineering properties of calcareous sand, a new building material, the mechanical properties of calcareous sand cement mortar were tested and the influences of water-cement ratio, curing conditions, curing age and size were studied by the compressive and flexu-ral strength,the microstructure of calcareous sand particles and cement mortar were analyzed by SEM, and the relationship between the fineness modulus of calcareous sand and water absorption was established. The results show that: the early strength of calcareous sand cement mortar is slightly higher than that of standard sand, but the strength is not as good as that of standard sand mortar at 28 d;The strength of cement mortar in seawater conservation is higher in the early stage of curing but significantly weaker in the later stage of curing than that in freshwater conservation. SEM revealed that, after the process of cement hydration, surface pores of the GS1 particles are well cemented by the hydration products such as: C-S-H, Ca(OH)2 and C-A-H, and the GS3 particles can have better bite force between the particles,however, GS2 does not have these advantages so that its compressive strength is less than the cement mortar of GS1 and GS3. The water absorption of calcareous sand is about 5%—6% higher than that of standard sand, the strength increases as the water absorption rate decreases; The water absorption and the fineness modulus of calcareous sand are in quadratic polynomial relations, the compressive strength calculation of calcareous sand cement mortar was corrected in consideration of the water absorption.
Key words:  calcareous sand    cement mortar    mechanical properties    microstructure    water absorption
                    发布日期:  2020-07-01
ZTFLH:  TQ17  
基金资助: 国家自然科学基金(51169005;41272358);广西自然科学基金重点项目(2018JJD160019);广西硕士研究生创新项目(YCSW2019161)
作者简介:  李文杰,1995年生,桂林理工大学土木与建筑工程学院硕士研究生,在吕海波教授的指导下进行研究,目前主要从事钙质砂工程力学性质方面的研究;范理云,贺州学院建筑工程学院土木工程专业教师,主要从事浅层地热利用中的岩土问题。近年来,发表EI学术论文一篇,申请专利一项,参加国家自然科学基金和开放基金《红黏土传热特性及其渗流-传热耦合作用机制研究》、国家自然科学基金《岩溶地区红黏土热湿迁移特性及其对地源热泵效应的影响》。
引用本文:    
李文杰, 陈宜虎, 范理云, 吕海波. 钙质砂水泥砂浆力学性能试验研究及微观结构分析[J]. 材料导报, 2020, 34(Z1): 224-228.
LI Wenjie, CHEN Yihu, FAN Liyun, LYU Haibo. Experimental Study and Microstructure Analysis of Calcareous SandCement Mortar. Materials Reports, 2020, 34(Z1): 224-228.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2020/V34/IZ1/224
1 刘崇权,杨志强,汪稔.岩土力学,1995,21(3),74.
2 赵云,陈磊,张博.国防科技,2018,39(5),48.
3 苏丽,牛荻涛,罗大明.材料导报,2018,32(19),3387.
4 Rick A E. Concrete International,1991,13(1),19.
5 Yodsudjai W, Otsuki N, Nishida T, et al.In: 27th Conference on Our World in Concerte& Structures.Singapore, 2002,pp.103.
6 陈兆林,陈天月,曲勣明.海洋工程.1991(3),67.
7 陈兆林,孙国峰,唐筱宁.海洋工程.2008,27(4),60.
8 Chen C, Ji T, Zhuang Y, et al. Construction and Building Materials.2015,98,227.
9 Cheng S K.In:The 9th International Symposium on Cement and Concrete,Wuhan,2017,pp.80.
10 王爱国,吕邦成,刘开伟等.材料导报,2018,32(9),1528.
11 房靖超,陈涛,何岩东,等.海南大学学报(自然科学版),2016,34(3),264.
12 陈飞翔,刘旷怡,张国志,等.新型建筑材料,2018,45(8),1.
13 梁元博,卢博,黄韶健.海洋技术,1995(2),58.
14 张金喜,金珊珊,张江,等.北京工业大学学报,2009,35(8),1062.
15 焦文秀,刘状壮,卢永伟,等.混凝土,2017(11),81.
16 王丽霞.科技信息,2011(10),743.
17 吴文娟,汪稔,朱长歧,等.建筑材料学报,2019,22(1),7.
18 王颖,夏云丰.国防交通工程与技术,2016,14(4),58.
[1] 吕展衡, 陈品鸿, 许冰, 罗颖, 周武艺, 董先明. 巯基-双键点击反应制备光固化红光转光膜及其性能[J]. 材料导报, 2020, 34(Z1): 111-115.
[2] 王枭, 郭伟, 胡月阳, 陈芹, 仇佳琳, 李正阳, 陈佳彬, 管荣成. 硫硅酸钙的合成及水化性能的研究[J]. 材料导报, 2020, 34(Z1): 169-172.
[3] 吴昊宇, 吴培红, 卞立波, 陶志. 纤维珠链在混凝土抗裂性能设计中的应用研究[J]. 材料导报, 2020, 34(Z1): 193-198.
[4] 欧孝夺, 彭远胜, 莫鹏, 江杰. 掺铝土尾矿泡沫轻质土的物理力学及水力特性研究[J]. 材料导报, 2020, 34(Z1): 241-245.
[5] 江雯, 蒋璐瑶, 黄伟九, 郭非, 董海澎. 退火处理对搅拌摩擦加工LZ91双相镁锂合金微观组织及力学性能的影响[J]. 材料导报, 2020, 34(Z1): 307-311.
[6] 宋文杰, 刘洁, 董会萍, 张光, 王彤. 超轻镁锂合金熔炼工艺研究[J]. 材料导报, 2020, 34(Z1): 316-321.
[7] 黄同瑊, 晁代义, 宋晓霖, 张伟, 王志雄, 张华, 吕正风. 热轧工艺对Al-Cu-Mg合金组织及性能的影响[J]. 材料导报, 2020, 34(Z1): 322-324.
[8] 陈姝敏, 吴迪, 何文浩, 陈勇. 银纳米粒子负载的石墨烯基环氧树脂复合材料的制备及性能[J]. 材料导报, 2020, 34(Z1): 503-506.
[9] 汪知文, 李碧雄. 稻壳灰应用于水泥混凝土的研究进展[J]. 材料导报, 2020, 34(9): 9003-9011.
[10] 徐翔宇, 郑勇, 吴昊, 丁青军, 王丽珠, 欧阳杰. 无磁金属陶瓷的研究进展[J]. 材料导报, 2020, 34(9): 9064-9068.
[11] 李世磊, 胡平, 段毅, 左烨盖, 邢海瑞, 李辉, 邓洁, 冯鹏发, 王快社, 胡卜亮. 掺杂方式对钼合金组织与力学性能影响的研究进展[J]. 材料导报, 2020, 34(9): 9132-9142.
[12] 靳贺松, 李福海, 何肖云峰, 王江山, 胡丁涵, 胡志明. 聚丙烯纤维水泥基复合材料的抗冻性能研究[J]. 材料导报, 2020, 34(8): 8071-8076.
[13] 岳莉, 朱亚明, 高丽娟, 胡朝帅, 赖仕全, 赵雪飞. 煤沥青中喹啉不溶物的基础物性及喹啉不溶物基沥青炭的微观结构研究[J]. 材料导报, 2020, 34(8): 8077-8082.
[14] 陶继闯, 卢一平. Mo含量对Al0.1CoCrCu0.5FeNiMox高熵合金的组织结构、力学性能及耐蚀性能的影响[J]. 材料导报, 2020, 34(8): 8096-8099.
[15] 徐道芬, 陈康华, 胡桂云, 陈送义. 微量稀土Ce对Al-Zn-Mg铝合金组织和腐蚀性能的影响[J]. 材料导报, 2020, 34(8): 8100-8105.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed