Please wait a minute...
材料导报  2020, Vol. 34 Issue (Z1): 22-25    
  无机非金属及其复合材料 |
分子印迹型二氧化钛的制备方法研究进展
魏声培
贵州省黔西南州环境保护监测站,兴义 562400
Research Progress in the Preparation of Molecular Imprinting Titanium Dioxide
WEI Shengpei
Environmental Monitoring Station of Qianxi Prefecture, Guizhou Province, Xingyi 562400, China
下载:  全 文 ( PDF ) ( 1929KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 分子印迹技术为改善二氧化钛的选择性提供了新思路,将二氧化钛能够受光激发降解有机污染物的能力与分子印迹聚合物的特异识别性能力结合已逐渐成为近年来的研究热点。本文简要综述了分子印迹型二氧化钛的制备方法,主要包括表面分子印迹技术和分子印迹溶胶-凝胶技术。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
魏声培
关键词:  分子印迹  二氧化钛  制备方法    
Abstract: The molecular imprinting technique provides a new way to improve the selectivity of titanium dioxide. It has become a hot research topic at present to combine the ability of titanium dioxide to degrade organic pollutants by light excitation with the specific recognition ability of molecularly imprinted polymers. In this paper, the preparation methods of molecularly imprinted titanium dioxide are reviewed. It mainly includes surface molecularly imprinted technology and molecularly imprinted sol-gel technology.
Key words:  molecular imprinting    titanium dioxide    preparation method
                    发布日期:  2020-07-01
ZTFLH:  TB33  
作者简介:  魏声培,黔西南州环境监测站工程师。2013年9月至2016年6月,在贵州师范大学获得分析化学硕士学位,毕业后到黔西南州环境监测站从事环境监测工作。目前在国内核心期刊上发表论文4余篇。
引用本文:    
魏声培. 分子印迹型二氧化钛的制备方法研究进展[J]. 材料导报, 2020, 34(Z1): 22-25.
WEI Shengpei. Research Progress in the Preparation of Molecular Imprinting Titanium Dioxide. Materials Reports, 2020, 34(Z1): 22-25.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2020/V34/IZ1/22
1 Haupt K, Mosbach K. Chemical Reviews,2000,100(7),2495.
2 Pauling L. Journal of the American Chemical Society,1940,62(10),2643.
3 Dichey F H. Proceedings of the National Academy of Sciences,1949,35,277.
4 Dichey F H. The Journal of Physical Chemistry,1955,59(8),695.
5 Wulff G, Sahan A, Zabrocki K. Tetrahedron Letters,1973,14(44),4329.
6 Vlatakis G, Andersson L I, Muller R, et al. Nature,1993,361,645.
7 姜忠义,吴洪.分子印迹技术,化学工业出版社,2003.
8 Ghosh-Mukeiji S, Haick H, Schvartzman M, et al. Journal of the American Chemical Society,2001,123,10776.
9 Paz Y. Comptes Rendus Chimie,2006,9(5-6),774.
10 Shen X T, Zhu L H, Li J. Chemical Communications,2007,11,1163.
11 Shen X T, Zhu L H. Environmental Science & Technology,2008,42,1687.
12 Shen X T, Zhu L H. New Journal of Chemistry,2009,33,2278.
13 Xu P P, Xu W Z, Zhang X J, et al. Adsorption Science & Technology,2009,27(10),975.
14 黄卫红,黄婷婷,徐婉珍,等.中国专利,CN 102600906A,2012.
15 Deng F, Li Y X, Luo X B. Colloids Surfaces A,2012,395,183.
16 吴鹏飞,朱雷,汪恂,等.工业水处理,2019,39(2),26.
17 Wang Z Q, Liu X, Li W Q, et al. Ceramics International,2014,40,8863.
18 刘馨琳,闫永胜,姚冠新,等.中国专利,CN 201210440572.2,2013.
19 Shiraishi Y, Suzuki T, Takayuki H. New Journal of Chemistry,2010,34(4),714.
20 魏声培,安娅,秦好丽.华南农业大学学报,2016,37(4),134.
21 Lu N. Chen S, Wang H, et al. Journal of Solid State Chemistry,2008,181(10),2852.
22 Liu Y, Liu R, Liu C, et al. Hazardous Materials,2010,182,2852.
23 Wang H T, Wu X, Zhao H M, et al. Environmental Chemistry,2012,57(6),601.
24 王凯.分子印迹聚合物的制备及其电化学性能研究.硕士学位论文,湖北大学,2014.
25 Huo P W, Lu Z Y, Liu X L, et al. Chemical Engineering Journal,2012,189,75.
26 Dovrat S, Yaron P. Applied Catalysis B: Environmental,2010,95,169.
27 吕运开,严秀平.分析化学(FENXIHUAXUE)评述与进展,2005,2(33),254.
38 邓芳.TiO2基光催化剂的制备与污染物降解的研究.博士学位论文,南昌大学,2011.
29 王娟.分子印迹、掺杂纳米TiO2光催化剂的制备及其选择性降解水中BPA的研究.硕士学位论文,云南大学,2012.
30 周婉媛,尹佳音,伊玉,等.武汉理工大学学报,2014,36(2),111.
31 张磊,周文静,龚雪云,等.化学研究,2014,25(5),504.
32 尹佳音.印迹型TiO2光催化剂的制备及其光催化性能研究.硕士学位论文,东华大学,2014.
33 魏声培,安娅,秦好丽,等.环境科学与技术, 2017,40(10),36.
34 张阳,安娅,魏声培,等.化工环保,2017,37(4),454.
35 张阳,安娅,魏声培,等.化工新型材料,2018,46(6),194.
36 占昌朝,曹小华,金文雄,等.材料导报:研究篇,2019,33(3),947.
37 王思旋.二氧化钛分子印迹光催化剂的制备和选择性光催化作用.硕士学位论文,华中师范大学,2013.
[1] 杨振楠, 刘芳, 李朝龙, 郑超, 曾有福, 郑鑫, 罗梅, 史浩飞. 核壳结构电磁波吸收材料研究进展[J]. 材料导报, 2020, 34(7): 7061-7070.
[2] 肖洒, 谈恒, 吴珊妮, 曾敏, 熊春荣. CuO/Er-Yb-TiO2的制备及在模拟可见光下催化CO2合成甲醇[J]. 材料导报, 2020, 34(2): 2005-2009.
[3] 孔令宇, 黄慧娟, 杨喜, 马建锋, 尚莉莉, 刘杏娥. 生物质基炭气凝胶复合材料在超级电容器中应用的研究进展[J]. 材料导报, 2019, 33(Z2): 32-37.
[4] 程亮, 赵子龙. 用Ti板制备高比表面积TiO2纳米管的响应面实验设计[J]. 材料导报, 2019, 33(Z2): 365-368.
[5] 张笑, 宋武林, 卢照, 曾大文, 谢长生. 纳米二氧化钛分散液稳定性的研究进展[J]. 材料导报, 2019, 33(z1): 16-21.
[6] 占昌朝, 曹小华, 金文雄, 叶志刚, 谢宝华, 徐建兴, 周荣辉. 以水杨酸为模板分子的Nd掺杂分子印迹TiO2的制备及光催化性能[J]. 材料导报, 2019, 33(6): 947-953.
[7] 吕斌, 程坤, 高党鸽, 马建中. 中空结构纳米TiO2微球的可控制备[J]. 材料导报, 2019, 33(5): 770-776.
[8] 林思宇, 曾春梅. 助催化剂NiCoP修饰改性增强半导体TiO2的光催化性能[J]. 材料导报, 2019, 33(24): 4046-4050.
[9] 李大玉, 张文韬, 张超. 不同种类金属掺杂改性TiO2材料光催化性能的研究进展[J]. 材料导报, 2019, 33(23): 3900-3907.
[10] 王亚斌, 郭敏, 史时辉, 呼科科, 张耀霞, 刘忠. 树枝状纤维形纳米球催化剂的研究进展[J]. 材料导报, 2019, 33(21): 3596-3605.
[11] 张 震,冯军宗,姜勇刚,刘 平,张秋华,卫荣辉,陈 翔,冯 坚. 利用离子液体制备无机气凝胶的研究进展[J]. 《材料导报》期刊社, 2018, 32(9): 1469-1476.
[12] 邵明增, 崔春娟, 杨洪波. 医用NiTi形状记忆合金表面氧化改性研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1181-1186.
[13] 刘兰燕,宋俊,程博闻,薛文池,郑云波. 木质素基碳纤维制备的研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 405-411.
[14] 郭韵恬, 王汉青. 稀土镧掺杂纳米二氧化钛复合保鲜包装薄膜的研究[J]. 材料导报, 2018, 32(24): 4357-4362.
[15] 马晓宇, 梁雨, 崔素萍, 王志宏, 王亚丽. 稻壳灰制备TiO2-SiO2复合载体脱硝催化材料[J]. 材料导报, 2018, 32(22): 3984-3988.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed