Please wait a minute...
材料导报  2020, Vol. 34 Issue (Z1): 178-180    
  无机非金属及其复合材料 |
氟铝络合物对硫酸铝型速凝剂性能的影响
陈镇杉1, 吴玉生1, 彭鹏飞1, 黄舟1, 陈梅红1, 蔡博群2
1 中国建材检验认证集团厦门宏业有限公司,厦门 361000;
2 北京工业大学建筑工程学院,北京 100022
Effect of Fluoro-aluminum Complexes on the Properties of Aluminum SulfateType Accelerator
CHEN Zhenshan1, WU Yusheng1, PENG Pengfei1, HUANG Zhou1, CHEN Meihong1, CAI Boqun2
1 China Building Material & Certification Group Xiamen Co., Ltd, Xiamen 361000, China;
2 College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100022, China
下载:  全 文 ( PDF ) ( 2484KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作研究了硫酸铝型速凝剂中氟铝络合物含量对速凝剂凝结时间和胶砂强度性能的影响。结果表明,在硫酸铝型速凝剂中,氟铝络合物增加,速凝剂促凝效果增加,但胶砂1 d抗压强度则总体降低。热分析和XRD测试结果表明,氟铝络合物能促进水泥钙矾石形成,缩短凝结时间,同时可能生成某种含氟的水化产物,抑制水泥1 d水化程度,且该产物不一定是CaF2
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈镇杉
吴玉生
彭鹏飞
黄舟
陈梅红
蔡博群
关键词:  氟铝络合物  速凝剂  抗压强度  水化产物    
Abstract: In this paper, the influence of the content of fluoro-aluminum complexes in aluminum sulfate type accelerator on the setting time and compressive strength was studied.The results showed that when the content of the fluoro-aluminum complexes in the aluminum sulfate type accelerator increased, the accelerating effect of the accelerator increased, but the 1 d compressive strength decreased. Thermal analysis and XRD test results show that the fluoro-aluminum complexes can promote the formation of AFt in cement, shorten the setting time, and may generate some fluorine-containing hydration products to inhibit the 1 d hydration. The fluorine-containing hydration products may not be CaF2.
Key words:  fluoro-aluminum complexes    accelerator    compressive strength    hydration products
                    发布日期:  2020-07-01
ZTFLH:  TU528.42  
基金资助: 厦门市建设局科技计划项目(XJK2019-1-3)
作者简介:  陈镇杉,男,1989年生,工程师,研究方向为高性能水泥基材料。
引用本文:    
陈镇杉, 吴玉生, 彭鹏飞, 黄舟, 陈梅红, 蔡博群. 氟铝络合物对硫酸铝型速凝剂性能的影响[J]. 材料导报, 2020, 34(Z1): 178-180.
CHEN Zhenshan, WU Yusheng, PENG Pengfei, HUANG Zhou, CHEN Meihong, CAI Boqun. Effect of Fluoro-aluminum Complexes on the Properties of Aluminum SulfateType Accelerator. Materials Reports, 2020, 34(Z1): 178-180.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2020/V34/IZ1/178
1 兰明章,阚常玉,杨进波.混凝土,2012(9),39.
2 宋敬亮,王曦东,董建忠,等.公路交通科技(应用技术版),2013,9(11),241.
3 甘杰忠.无氯无碱液体速凝剂的组成、性能及机理研究.硕士学位论文,中国建筑材料科学研究总院,2014.
4 程建坤.无碱液态水泥速凝剂合成方法的研究.硕士学位论文,南京工业大学,2005.
5 邓磊,蒋禹,沈建荣,等.中国建材科技,2018,27(3),27.
6 逄鲁峰,孙华强,周在波,等.新型建筑材料,2018,45(1),43.
7 邓磊,蒋禹,罗小峰,等.商品混凝土,2018(6),53.
8 张述雄,王栋民,张力冉,等.硅酸盐通报,2014,33(11),2946.
9 杨力远,田俊涛,胡小峰,等.新型建筑材料,2017,44(5),29.
10 古朝建,任豪,任启进,等.新型建筑材料,2019,46(6),123.
11 王龙飞,李茜茜,董树强,等.科技风,2017(10),103.
12 曾鲁平,乔敏,王伟,等.硅酸盐学报,2020(5),659.
[1] 姜宽, 戚承志, 崔英洁, 李太行, 卢真辉. 纤维素等若干因素对仿钢纤维增强透水混凝土性能的影响[J]. 材料导报, 2020, 34(Z1): 189-192.
[2] 卢喆, 冯振刚, 姚冬冬, 纪鸿儒, 秦卫军, 于丽梅. 超高性能混凝土工作性与强度影响因素分析[J]. 材料导报, 2020, 34(Z1): 203-208.
[3] 欧孝夺, 彭远胜, 莫鹏, 江杰. 掺铝土尾矿泡沫轻质土的物理力学及水力特性研究[J]. 材料导报, 2020, 34(Z1): 241-245.
[4] 盖海东, 冯春花, 董一娇, 赵倩, 李东旭. 纳米压痕技术应用于水泥基材料的研究进展[J]. 材料导报, 2020, 34(7): 7107-7114.
[5] 戴俊, 钱春香, 陈竞, 庞忠华. 无水乙酸钠对磷酸钾镁水泥水化性能和微观形貌的影响[J]. 材料导报, 2020, 34(6): 6066-6074.
[6] 申嘉荣, 徐千军. 高温对混凝土孔隙结构改变和抗压强度降低作用的规律研究[J]. 材料导报, 2020, 34(2): 2046-2051.
[7] 赵燕茹, 刘芳芳, 王磊, 郭子麟. 单面盐冻条件下基于孔结构的玄武岩纤维混凝土抗压强度模型[J]. 材料导报, 2020, 34(12): 12064-12069.
[8] 董金美, 肖学英, 李颖, 文静, 郑卫新, 常成功, 余红发. 原料质量配比对盐湖磷酸钾镁水泥性能和微观结构的影响[J]. 材料导报, 2020, 34(10): 10041-10045.
[9] 胡建伟, 谢永江, 刘子科, 翁智财, 王月华, 何龙. 两阶段变速搅拌对高强混凝土稳定性的影响[J]. 材料导报, 2019, 33(z1): 229-233.
[10] 候昱灼, 廖洪强, 高宏宇, 程芳琴. 不同条件下聚苯颗粒泡沫混凝土的发泡过程及发泡体性能研究[J]. 材料导报, 2019, 33(z1): 234-238.
[11] 李保亮, 尤南乔, 朱国瑞, 霍彬彬, 张亚梅. 蒸养条件下锂渣复合水泥的水化产物与力学性能[J]. 材料导报, 2019, 33(24): 4072-4077.
[12] 张雄, 王啸夫. 若干因素对透水砖性能影响机理的研究进展[J]. 材料导报, 2019, 33(23): 3949-3954.
[13] 巩位,余红发,麻海燕,达波. 全珊瑚海水混凝土配合比设计及评价方法[J]. 材料导报, 2019, 33(22): 3732-3737.
[14] 杨刘琨, 潘志华, 徐赛赛, 刘劲松. 微胶囊在修补砂浆中延迟释放早强剂的应用及性能分析[J]. 材料导报, 2019, 33(2): 246-250.
[15] 杨凯, 张之璐, 杨永, 韩昊, 黄文聪, 朱效宏, 唐德莎, 李爽, 杨长辉. 复合激发剂对碱矿渣胶结材水化进程及早期性能的影响[J]. 材料导报, 2019, 33(14): 2326-2330.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed