Please wait a minute...
材料导报  2019, Vol. 33 Issue (z1): 392-397    
  金属与金属基复合材料 |
高熵合金设计与计算机模拟方法的研究进展
刘谦1, 王昕阳1, 黄燕滨1, 谢璐2, 许诠1, 黄俊雄1
1 陆军装甲兵学院装备保障与再制造系,北京 100072
2 北京科技大学机械工程学院,北京 100083
Research Progress on High-entropy Alloy Design and Computer Simulation
LIU Qian1, WANG Xinyang1, HUANG Yanbin1, XIE Lu2, XU Quan1, HUANG Junxiong1
1 Equipment Support and Remanufacturing Department, Army Academy of Armored Forces, Beijing 100072
2 Institute of Mechanical Engineering, University of Science & Technology Beijing, Beijing 100083
下载:  全 文 ( PDF ) ( 2592KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高熵合金突破了传统的合金设计理论,实现了材料的可合成、可分析、可控制,为合金的发展提供了新思路。高熵合金由于具有超强的耐腐蚀性能、极佳的耐磨性能、优异的抗辐射性能、良好的力学性能等特性,在工业领域具有广阔的应用前景。
目前,对于高熵合金设计的研究还存在许多不足之处:(1)高熵合金的基础理论研究尚不完善。在固溶强化机制方面,由于高熵合金的组分众多,很难确定哪种组分是溶剂,哪种组分是溶质;在扩散机制方面,虽然实验已经证明高熵合金的扩散系数低于普通合金,但与吉布斯-安丹姆方程矛盾。这些问题给高熵合金的设计带来不确定性。(2)2011年美国提出了“材料基因组计划”。它是以第一性理论、加速分子动力学、热力学模型等理论,借助现有的信息技术模拟预测新材料性能,最后用实验证明的新材料研发方法。目前,高熵合金在工业应用上有很大的前景。因此,加大高熵合金的高通量计算,完善高熵合金的性能研究,具有重要的实际意义。
自高熵合金的概念被提出以来,广大的科研工作者投身到高熵合金的研究工作之中,先后研究了传统高熵合金、难熔高熵合金和复合高熵合金等的组织结构、性能特点和制备工艺,为高熵合金的设计提供了大量的数据支持。此外,“混乱理论”、高熵合金设计参数、第一性原理等理论的提出进一步丰富了高熵合金的理论基础。
本文介绍了高熵合金的基本理论和特点,重点论述了高熵合金的设计理论和方法。总结了高熵合金在热力学和动力学上的形成条件,并根据研究现状对高熵合金进行分类,分析了组分元素的种类和配比对高熵合金组织结构以及性能特点的影响,综述了高熵合金计算机模拟方法的基本理论和计算模型,总结了其在性能预测上的应用。最后展望了高熵合金设计的研究方向和发展前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘谦
王昕阳
黄燕滨
谢璐
许诠
黄俊雄
关键词:  高熵合金  高熵合金设计  组分元素  计算机模拟方法    
Abstract: The high-entropy alloy breaks through the traditional alloy design theory, which can realize the synthesis, analysis and control of the material, and provides a new idea for the development of the alloy. High-entropy alloys have broad application prospects in the industrial field due to their superior corrosion resistance, excellent wear resistance, excellent radiation resistance, and good mechanical properties.
Meanwhile, there are still many shortcomings in the design of high-entropy alloys: (1)the basic theoretical research of high entropy alloys is not perfect. In terms of solid solution strengthening mechanism, due to the large number of components of the high entropy alloy, it is difficult to determine which component is a solvent and which component is a solute. In terms of the diffusion mechanism, although the experiment has proved that the diffusion coefficient of the high entropy alloy is lower than that of the ordinary alloy, it contradicts the Gibbs-Andm equation. These problems bring uncertainty to the design of high entropy alloys. (2)In 2011, the United States proposed the "Materials Genome Initiative", which uses first principle, accelerated molecular dynamics, thermodynamic model, etc. to predict the performance of new materials by information technology simulation, and then proves them by experiment. At present, high-entropy alloys have great prospects in industrial applications. It is of great practical significance to increase the high-throughput calculation of high-entropy alloys and improve the performance of high-entropy alloys.
Since the concept of high-entropy alloys was proposed, the vast number of scientific researchers have devoted themselves to the research work of high entropy alloys, and have researched the micro-structure, performance and preparation process of traditional high entropy alloys, refractory high-entropy alloys and composite high-entropy alloys, which provides a large amount of data for its component design. In addition, "ch-aos theory", high entropy alloy design parameters, first principle, etc.further enrich its theoretical basis.
High-entropy alloys break through the traditional alloy design concept and provide a new idea for the alloy development. The paper reviews the basic theories and characteristics of high-entropy alloys. The main contents are about the design theories and methods of high-entropy alloys. The formation conditions of high entropy alloys in thermodynamics and dynamics are summarized. According to the research status, the high-entropy alloy is classified, and component types and proportions’ influence on the micro-structure and properties are summarized.The basic theories and calculation methods of high-entropy alloy computer simulation methods are reviewed, and its application in performance prediction is summarized. Finally, the research directions and development prospects of high-entropy alloy design theories and methods are prospected
Key words:  high-entropy alloy    the design of high entropy alloys    component element    computer simulation method
               出版日期:  2019-05-25      发布日期:  2019-07-05
ZTFLH:  TG131  
作者简介:  刘谦,陆军装甲兵学院装备保障与再制造系副教授、硕士研究生导师。1996年7月本科毕业于装甲兵工程学院,1999年3月获材料加工工程专业硕士学位,2008年6月获材料加工工程博士学位。主要从事装备维修与防护教学科研工作,在表面工程、腐蚀防护和特种加工等方向进行研究,主持或参与军队科研、国家自然科学基金、国家重大科技专项等教学科研项目多项,获教学和科研成果奖8项,获(实用新型、国家发明)专利20余项。发表论文30余篇,参与出版专著3部。1590124829@163.com
引用本文:    
刘谦, 王昕阳, 黄燕滨, 谢璐, 许诠, 黄俊雄. 高熵合金设计与计算机模拟方法的研究进展[J]. 材料导报, 2019, 33(z1): 392-397.
LIU Qian, WANG Xinyang, HUANG Yanbin, XIE Lu, XU Quan, HUANG Junxiong. Research Progress on High-entropy Alloy Design and Computer Simulation. Materials Reports, 2019, 33(z1): 392-397.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2019/V33/Iz1/392
1 张勇. 非晶和高熵合金, 科学出版社,2010.
2 Chookajorn T, Murdoch H A, Schuh C A. Science,2012,337(6097),951.
3 Yeh J W, Chen S K, Lin S J, et al. Advanced Engineering Materials,2004,6(5),299.
4 Yeh J W, Chen S K, Lin S J, et al. Advanced Engineering Materials,2004,6,74.
5 Murty, Yeh, Ranganathan. High-entropy alloys, Butterworth-Heinemann, Oxford,UK,2014.
6 Gaskell. Introduction to the thermodynmics of materials, CRC Press, Baca Raton, USA, 2008.
7 Swalin Ra. In thermodynamics of solids, Wiley,1991.
8 Zhang Y. 中国科学:材料科学(英文版),2017,61(1),2.
9 赵钦, 马国政, 王海斗,等. 材料导报:综述篇,2017(7),65.
10 Bennethum, Cushman, Multiscale. International Journal of Engineering Science,1996,32,125.
11 Yeh J W. JOM,2013(65),1759.
12 Miracle D, Miller J, Senkov O, et al. Entropy,2014,16(1),494
13 Zhang L S, Ma G L, Fu L C, et al. Advanced Materials Research,2013,631-632(3),6.
14 Tsai K Y, Tsai M H, Yeh J W. Acta Materialia,2013,61(13),4887.
15 Zhang Y, Zuo T T, Tang Z, et al. Progress in Materials Science,2014,61,1.
16 Zhuang H, Wang Q T, Tang Q H, et al. Corrosion and Protection,2013,7(34),561.
17 陈永星, 朱胜, 王晓明, 等. 材料工程,2017(11),133.
18 He J Y, Liu W H, Wang H, et al. Acta Materialia,2014,62(1),105.
19 Ye Y F, Wang Q, Lu J, et al. Intermetallics,2015,59,75.
20 Ye Y F, Wang Q, Lu J, et al. Scripta Materialia,2015,104,53.
21 Ye Y F, Wang Q, Lu J, et al. Materials Today,2016,19(6),349.
22 Tsai M H, Yeh J W. Materials Research Letters,2014,2(3),107.
23 Zhang Y, Zhou Y J, Lin J P, et al. Advanced Engineering Materials,2008,10(6),534.
24 Guo S, Ng C, Lu J. Journal of Applied Physics,2011,109(10),213.
25 Yao H W, Qiao J W, Gao M C, et al. Materials Science & Engineering A,2016,674,203.
26 Gao M C, Carney C S, Jablonksi P D, et al. JOM,2015,67(11),2653.
27 Yang X, Zhang Y. Materials Chemistry & Physics,2012,132(2-3),233.
28 方思聪. 机械合金化AlCoFeNiCu系高熵合金组织与性能研究. 硕士学位论文, 华南理工大学,2014.
29 李安敏, 张喜燕. 热加工工艺,2008,37(4),26.
30 Xie H B, Liu G Z, Guo J J. The Chinese Journal of Nonferrous Metals,2015,25(1),103.
31 张欢. Y_xCoCrFeNi和Gd_xCoCrFeNiCu系高熵合金结构和性能的研究. 硕士学位论文, 燕山大学,2015.
32 林丹阳. B、Ti、Nb含量对激光熔覆FeCoCrNiAl高熵合金涂层组织与性能的影响. 硕士学位论文, 沈阳工业大学,2017.
33 孙昭媛. 高熵合金的制备及其组织和力学性能的研究. 硕士学位论文, 吉林大学,2014.
34 安超. AlxFeCoCrCuTi(0.5)高熵合金腐蚀与生物性能研究. 硕士学位论文, 哈尔滨工业大学,2018.
35 唐群华,戴品强,花能斌. 机械工程材料,2015,39(12),1.
36 Wu Y D, Cai Y H, Wang T, et al. Materials Letters,2014,130,277.
37 Senkov O N, Scott J M, Senkova S V, et al. Journal of Alloys and Compounds,2011,509(20),6043.
38 Fazakas E, Zadorozhnyy V, Vargal L K, et al. International Journal of Refractory Metals & Hard Materials,2014,47(11),131.
39 Senkov O N, Senkova S V, Miracle D B, et al. Materials Science & Engineering A,2013,565(5),51.
40 Wang W R, Wang W L, Wang S C, et al. Intermetallics,2012,26,44.
41 Ma Y, Jiang B B, Li C L, et al. Metal,2017,7,57.
42 Senkov O N, Wiks G B, Scott J M, et al. Intermetallics,2011,19(5),698.
43 Senkov O N, Scott J M, Senkova S V, et al. Journal of Alloys & Compounds,2011,509(20),6043.
44 Senkov O N, Scott J M, Senkova S V, et al. Journal of Materials S-cience,2012,47(9),4062.
45 Feng X B, Zhang J Y, Wang Y Q, et al. International Journal of Plasticity,2017,95,264.
46 Liu C M, Wang H M, Zhang S Q, et al. Journal of Alloys & Compounds,2014,583(3),162.
47 Gorr B, Mueller F, Christ H J, et al. Journal of Alloys and Compounds,2016,688,468.
48 Geng J, Tsakiropoulos P, Shao G. Materials Science and Engineering A,2006,441(1),26.
49 付志强. AlCrFeNi-M系高熵合金及其复合材料组织与性能研究. 硕士学位论文, 哈尔滨工业大学,2011.
50 盛洪飞. AlxCoCrCuFeNi系高熵合金及其复合材料的制备、微结构与性能研究. 博士学位论文, 中国科学技术大学,2014.
51 黄祖凤, 张冲, 唐群华, 等. 中国表面工程,2013,26(1),13
52 吴炳勇. FeNiCoCu系高熵合金及其复合材料的微观组织与力学性能研究. 硕士学位论文, 华南理工大学,2017.
53 Zhang J R, Zhao Y Q, et al. Applied Surface Science,2019,469,27.
54 Lin L, Zhu L, Zhao R, et al. New Journal of Chemistry,2018,10,1039.
55 Shi D, Wen B, Melnik R, et al. Journal of Solid State Chemistry,2009,182(10),2664.
56 Kohn W, Sham L J. Physical Review, 1965, 140(4A), A1133.
57 王兰馨. AlFeCrCuX高熵合金力学性能的第一性原理计算. 博士学位论文, 大连理工大学,2017.
58 Ma D C,Grabowski B, Kormann F, et al. Acta Materialia,2015,100,90.
59 丁欣恺, 孙琨, 张猛. 西安交通大学学报,2018,52(11),86.
60 Zuo T, Gao M C, Ouyang L, et al. Acta Materialia,2017,130,10.
61 Zhang Y H, Zhuang Y, Hu A, et al. Scripta Materialia,2017,130,96.
62 Zunger S, Wei A, Ferreira L G. Physical Review Letters,1990,65(3),353.
63 Walle A V D, Tiwary P, Jong M D, et al. Calphad-computer Coupling of Phase Diagrams & Thermochemistry,2013,42(46),13.
64 Tian F, Wang Y, Vitos L. Journal of Applied Physics,2017,121(1),015105.
65 Larkin J M, Mcgaughey A J. Journal of Applied Physics,2013,114(2),023507.
66 Bellaiche L, Vanderbilt D. Physical Review B,2000,61(12),7877.
67 Gyorffy B. Physical Review B Condensed Matter, 1972,5(6),2382.
68 沈玉堂, 张昭庆. 物理学报,1981(7),992.
69 Troparevsky M C, Morris J R, Daene M, et al. JOM,2015,67(10),2350.
70 Kormann F, Ma D, Belyea D D. Applied Physics Letters,2015,107(14),142404.
71 Zaddach A J, Niu C, Koch C C, et al. JOM,2013,65(12),1780.
72 Gao M C, Alman D E. Entropy,2013,15(10),4504.
73 Gao M C, Zhang B, Zhang Y, et al. Calphad,2015,51,193.
74 Liu J, Li D, Liu X. Journal of Chemical Physics,2016,145(2),1291.
[1] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[2] 郭策安, 赵宗科, 赵爽, 卢凤生, 赵博远, 张健. 电火花沉积AlCoCrFeNi高熵合金涂层的高速摩擦磨损性能[J]. 材料导报, 2019, 33(9): 1462-1465.
[3] 赵雪柔, 吕煜坤, 石拓. 高熵合金相形成理论研究进展[J]. 材料导报, 2019, 33(7): 1174-1181.
[4] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[5] 颜建辉, 李凯玲, 汪异, 邱敬文. 机械合金化和放电等离子烧结制备NbMoCrTiAl高熵合金[J]. 材料导报, 2019, 33(10): 1671-1675.
[6] 王虎, 王智慧. 等离子熔覆法制备AlxCoCrFeNi高熵合金微观组织与性能研究[J]. 《材料导报》期刊社, 2018, 32(4): 589-592.
[7] 李安敏,史君佐,谢明款. 高熵合金力学性能的研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 461-466.
[8] 郭亚雄,刘其斌,尚晓娟,徐鹏,周芳. CoCrFeNi-M系高熵合金的结构与相变[J]. 《材料导报》期刊社, 2018, 32(1): 122-127.
[9] 赵钦,马国政,王海斗,李国禄,陈书赢,周羊羊. 高熵合金涂层制备及其应用的研究进展*[J]. 《材料导报》期刊社, 2017, 31(7): 65-71.
[10] 朱刚, 陈家林, 贾海龙, 刘颖, 谢明. Ti(C,N)/AlCoCrFeNi金属陶瓷烧结过程中的粘结相表面富集行为研究*[J]. 《材料导报》期刊社, 2017, 31(16): 125-128.
[11] 温鑫, 金国, 庞学佳, 蔡召兵, 张子晗, 崔秀芳, 王海斗, 徐滨士. 热处理对真空热压烧结NiCrCoTiV高熵合金组织结构及耐腐蚀性能的影响*[J]. 《材料导报》期刊社, 2017, 31(12): 79-83.
[12] 任波, 赵瑞锋, 刘忠侠. 高熵合金氮化物薄膜的研究进展*[J]. 《材料导报》期刊社, 2017, 31(11): 44-50.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed