Please wait a minute...
材料导报  2019, Vol. 33 Issue (z1): 244-248    
  无机非金属及其复合材料 |
基于超高性能混凝土的钢筋锚固性能研究
韩方玉1,2, 刘建忠1,2, 刘加平1,2, 马骉3, 沙建芳1,2, 王兴龙1,2
1 江苏苏博特新材料股份有限公司,南京 211103
2 高性能土木工程材料国家重点实验室,南京 211103
3 上海市政工程设计研究总院(集团)有限公司,上海200092
Study on Anchorage Behavior of Steel Bar in Ultra-high Performance Concrete
HAN Fangyu1,2, LIU Jianzhong1,2, LIU Jiaping1,2, MA Biao3, SHA Jianfang1,2, WANG Xinglong1,2
1 Jiangsu Sobute New Materials Co., Ltd., Nanjing 211103
2 State Key Laboratory of High Performance Civil Engineering Materials, Nanjing 211103
3 Shanghai Municipal Engineering Design Institute (Group) Co., Ltd., Shanghai 200092
下载:  全 文 ( PDF ) ( 2686KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了明确超高性能混凝土(UHPC)与钢筋之间的界面粘结性能,采用钢筋拉拔试验研究了钢筋直径、锚固长度和材料组成对界面粘结性能的影响。结果表明:在直径12~28 mm钢筋下,UHPC可显著降低钢筋的有效锚固长度至3d、4d、5d,且随着锚固长度的增加,UHPC与钢筋的极限粘结强度呈现下降趋势;为保证钢筋出现屈服断裂,钢筋在UHPC中的锚固长度宜为4d以上;钢纤维对裂缝扩展的抑制作用及其产生的应变硬化效果对界面粘结性能具有显著的提升作用,且保护层厚度越小越为突出。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
韩方玉
刘建忠
刘加平
马骉
沙建芳
王兴龙
关键词:  超高性能混凝土  钢筋  锚固长度  粘结性能    
Abstract: In this work, bonding behavior of steel bar reinforcement in ultra-high performance concrete (UHPC) was investigated. A series of bar pull-out tests was performed using HRB400 steel bar with nominal diameter of 12 mm, 16 mm, 20 mm, 25 mm and 28 mm. Other experimental parameters include three anchorage lengths (3d, 4d, 5d) and three fiber dosage (1%, 2%, 2.5%).Results showed that an effective anchorage length of 3d—5d is acquired for all bars, and the ultimate bonding strength shows a downward trend as anchorage lengths increases. Anchorage length of bar is suggested to be more than 4d, in order to ensure yield fracture of steel bars. Steel fiber and its resulting strain hardening effect have a positive effect on the bonding behavior, and are more pronounced with decreased protective thickness of bars.
Key words:  ultra-high performance concrete    steel bar    anchorage length    bonding behavior
               出版日期:  2019-05-25      发布日期:  2019-07-05
ZTFLH:  TU528.31  
  TB301  
基金资助: 国家自然科学面上基金(51578269);国家重点研发计划(2018YFC0705400);国家自然科学基金重点项目(51438003)
作者简介:  韩方玉,2014年毕业于东南大学,土木工程材料专业。同年加入高性能土木工程材料国家重点实验室(江苏苏博特新材料股份有限公司)工作至今,主要从事超高性能混凝土的研究与应用。hanfangyu@cnjsjk.cn
引用本文:    
韩方玉, 刘建忠, 刘加平, 马骉, 沙建芳, 王兴龙. 基于超高性能混凝土的钢筋锚固性能研究[J]. 材料导报, 2019, 33(z1): 244-248.
HAN Fangyu, LIU Jianzhong, LIU Jiaping, MA Biao, SHA Jianfang, WANG Xinglong. Study on Anchorage Behavior of Steel Bar in Ultra-high Performance Concrete. Materials Reports, 2019, 33(z1): 244-248.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2019/V33/Iz1/244
1 Rossi P. Concrete International,2001,23(12),46.
2 Association Francaise de Génie Civil. Ultra-high performance fibre reinforced concretes-interim recommendations and annex, AFGC Scientific and Technical Documents, France,2002.
3 刘建忠. 超高性能水泥基复合材料制备技术及静态拉伸行为研究. 博士学位论文,东南大学,2013.
4 张文华. 超高性能水泥基复合材料微结构形成机理与动态力学行为研究. 博士学位论文,东南大学,2013.
5 张云升,张文华,刘建忠. 超高性能水泥基复合材料,科学出版社,2014.
6 Wille K, EI-Tawil S, Naaman A E. Cement and Concrete Composites,2014,48,53.
7 Tran N T, Trana T K, Kima D J. Cement and Concrete Research,2015,69,72.
8 Nguyen D L, Ryu G S, Koh K T, et al. Composites: Part B,2014,58,279.
9 Beglarigale A, Yazici H. Construction and Building Materials,2015,75,255.
10 Wille K, Naaman A E. In: Proceedings of 18th European Conference on Fracture and Damage of Advanced Fiber-reinforced Cement-based Mate-rials. Dresden,2010,pp.99.
11 Yuan J, Benjamin A. Bond behavior of reinforcing steel in ultra-high performance concrete, USA,2014.
12 Yu R, Spiesz P, Brouwers H J H. Cement and Concrete Research,2014,56,29.
13 刘建忠,韩方玉,周华新,等.材料导报:综述篇,2017,31(12),24.
14 Azizinamini A, Stark M, Toller J J, et al. ACI Structural Journal,1993,90(5),554.
15 Alkaysi M, El-Tawil S. Construction and Building Materials,2017,144,412.
[1] 高小建, 李双欣. 微波养护对掺矿渣超高性能混凝土力学性能的影响及机理[J]. 材料导报, 2019, 33(2): 271-276.
[2] 王潇舷, 金祖权, 姜玉丹, 陈凡秀. 基于DIC与应变测试的混凝土中钢筋锈胀应力分析[J]. 材料导报, 2019, 33(16): 2690-2696.
[3] 曹润倬, 周茗如, 周群, 何勇. 超细粉煤灰对超高性能混凝土流变性、力学性能及微观结构的影响[J]. 材料导报, 2019, 33(16): 2684-2689.
[4] 周昱程, 刘娟红, 纪洪广, 付士峰, 谷峪. 温度-复合盐耦合条件下纤维混凝土井壁冲击倾向性试验研究[J]. 材料导报, 2019, 33(16): 2671-2676.
[5] 辛景舟, 周建庭, 周应新, 苏欣, 冉文兴. 考虑材料劣化的钢筋混凝土压弯构件承载力演化试验研究[J]. 材料导报, 2019, 33(14): 2362-2369.
[6] 达波, 余红发, 麻海燕, 吴彰钰. 全珊瑚海水混凝土中不同种类钢筋的防腐蚀性能[J]. 材料导报, 2019, 33(12): 2002-2008.
[7] 郭浩冉, 高古辉, 桂晓露, 白秉哲. 显微组织对贝氏体钢筋氢脆敏感性的影响[J]. 材料导报, 2019, 33(10): 1717-1722.
[8] 郑山锁, 裴培, 张艺欣, 董立国, 郑捷, 董方园. 钢筋混凝土粘结滑移研究综述[J]. 材料导报, 2018, 32(23): 4182-4191.
[9] 李哲, 金祖权, 邵爽爽, 徐翔波. 海洋环境下混凝土中钢筋锈蚀机理及监测技术概述[J]. 材料导报, 2018, 32(23): 4170-4181.
[10] 刘梦梅, 韩 森, 潘 俊, 李 微, 任万艳. 水性环氧树脂乳化沥青在高温、低温和浸水条件下的粘结性能[J]. 《材料导报》期刊社, 2018, 32(10): 1716-1720.
[11] 余自若, 沈捷, 贾方方, 安明喆. 超高性能混凝土与普通混凝土的黏结抗冻性能*[J]. CLDB, 2017, 31(23): 138-144.
[12] 杨医博, 杨凯越, 吴志浩, 林少群, 丘广宏, 燕哲, 彭章锋, 林燕姿, 郭文瑛, 王恒昌. 配筋超高性能混凝土用作免拆模板对短柱力学性能影响的实验研究*[J]. CLDB, 2017, 31(23): 120-124.
[13] 程俊, 刘加平, 刘建忠, 张倩倩, 张丽辉, 林玮, 韩方玉. 含粗骨料超高性能混凝土力学性能研究及机理分析*[J]. CLDB, 2017, 31(23): 115-119.
[14] 张丽辉, 刘加平, 周华新, 刘建忠, 张倩倩, 韩方玉. 粗骨料与钢纤维对超高性能混凝土单轴拉伸性能的影响*[J]. CLDB, 2017, 31(23): 109-114.
[15] 张文华, 陈振宇. 超高性能混凝土动态冲击拉伸性能研究*[J]. CLDB, 2017, 31(23): 103-108.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed