Please wait a minute...
材料导报  2019, Vol. 33 Issue (Z2): 83-88    
  无机非金属及其复合材料 |
Zn1-xCexO纳米纤维的电纺制备及其红外雷达兼容隐身性能
汪心坤, 赵芳, 王建江
陆军工程大学石家庄校区,石家庄 050003
Infrared/Radar Compatible Stealth Properties of Zn1-xCexO Nanofibers Preparedby Electrospinning
WANG Xinkun, ZHAO Fang, WANG Jianjiang
Shijiazhuang Campus of Army Engineering University, Shijiazhuang 050003
下载:  全 文 ( PDF ) ( 2707KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以醋酸锌、硝酸铈和聚乙烯吡咯烷酮为主要原料,通过静电纺丝技术结合后期的热处理制备了Zn1-xCexO(x=0.0,0.02,0.04,0.06,0.08)纳米纤维。利用热重-差热分析仪、X射线衍射仪、场发射扫描电子显微镜、四探针电阻测量仪、红外发射率测试仪和矢量网络分析仪研究了前驱体纤维的热分解过程以及Ce3+掺杂对氧化锌晶体结构、微观形貌、电阻率、红外发射率和微波吸收性能的影响。结果表明,600 ℃煅烧2 h得到的Zn1-xCexO纳米纤维均为六方纤锌矿型结构,纤维直径为100 nm左右。样品的红外发射率随Ce3+掺量增加而先降低后增加,这与其电阻率的变化保持一致,当掺杂浓度x=0.04时, 样品红外发射率最低为0.78。另外,当匹配厚度为1.5 mm时,Zn0.96Ce0.04O纳米纤维的吸收效果最佳,在频率为12.3 GHz时,最低反射率为-33.6 dB,低于-10 dB的吸收频带为11.0~13.8 GHz,带宽为2.8 GHz。这使得Zn1-xCexO纳米纤维有望成为一种极具应用前景的红外/雷达兼容隐身材料。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
汪心坤
赵芳
王建江
关键词:  Zn1-xCexO纳米纤维  静电纺丝  微波吸收  红外发射率    
Abstract: Single-phase Zn1-xCexO (x=0.0,0.02,0.04,0.06 and 0.08) nanofibers were successfully fabricated via electrospinning technique in combination with subsequent heat treatment using zinc acetate, barium nitrate and polyvinylpyrrolidone as principal raw material. The thermal decomposition process of as-spun precursor nanofibers and the influences of Ce incorporation on the crystal structure, micromorphology, electrical conductivity, infrared emissivity and microwave-absorbing properties of the prepared nanofiber samples were investigated by means of thermogravi-metric and differential thermal analysis, X-ray diffraction, field emission scanning electron microscopy, 4-point probes resistivity measurement system, IR-2 infrared-emissivity analyzer and vector network analyzer. The results show that the Zn1-xCexO nanofibers obtained by calcination at 600 ℃ for 2 h are all hexagonal wurtzite structure with fiber diameter of about 100 nm. With the increase of Ce3+ doping concentration, the infrared emissivity of the sample decreases first and then increases, which is consistent with the change in resistivity. When the doping concentration is 0.04, the lowest infrared emissivity is 0.78. Moreover, the microwave absorption properties of Zn1-xCexO nanofibers was the best as the matching thickness is 1.5 mm. The minimum reflectivity can reach -33.6 dB at 12.3 GHz, and the frequency band with reflectivity less than -10 dB is 11.0—13.8 GHz. It is possible to make Zn1-xCexO nanofibers used as a novel and promising infrared/radar compatible stealth material.
Key words:  Zn1-xCexO nanofibers    electrospinning    microwave absorption    infrared emissivity
               出版日期:  2019-11-25      发布日期:  2019-11-25
ZTFLH:  TB34  
基金资助: 陆军工程大学创新基金(KYSZJQZL1910)
通讯作者:  1140644369@qq.com   
作者简介:  汪心坤,2017年6月毕业于中国石油大学(华东),获得理学学士学位。现为陆军工程大学石家庄校区硕士研究生。目前主要研究领域为纳米功能材料。
赵芳,陆军工程大学石家庄校区副教授。多次担任全国大学生金相技能大赛评审委员会及监督委员会委员。主要研究领域为功能陶瓷吸波材料,作为项目骨干成员,参与国家自然科学基金、河北省自然科学基金在内的军内科研十多项,授权国家、国防发明专利4项,实用新型专利5项,在SCI、EI收录期刊发表论文20余篇。
引用本文:    
汪心坤, 赵芳, 王建江. Zn1-xCexO纳米纤维的电纺制备及其红外雷达兼容隐身性能[J]. 材料导报, 2019, 33(Z2): 83-88.
WANG Xinkun, ZHAO Fang, WANG Jianjiang. Infrared/Radar Compatible Stealth Properties of Zn1-xCexO Nanofibers Preparedby Electrospinning. Materials Reports, 2019, 33(Z2): 83-88.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2019/V33/IZ2/83
1 白天,王秀兰.宇航材料工艺,2015(6),8.
2 陶宇,陶志萍.材料导报:综述篇,2011,25(6),40.
3 张亚坤,曾凡,戴全辉,等.战术导弹技术,2019(1),56.
4 Chen Y, Zhang H, Gao W, et al. In: American Institute of Physics Conference Series.2018.
5 Tian H, Liu H T, Cheng H F. Chinese Physics B,2014,23(2),1.
6 Su X L, Jia Y, Wang J B, et al. Advances in Applied Ceramics,2014,113(5),262.
7 Yuan L E, Weng X, Xie J, et al. Journal of Alloys & Compounds,2013,580(32),108.
8 Xu L, Miao J, Chen Y, et al. Optik,2018,170,484.
9 Chandrasekaran V, Chidambaram S, Ganesan M K. Journal of Materials Science Materials in Electronics,2018,29(1),667.
10 Min Z, Zhang H, Lin L, et al. Journal of Alloys & Compounds,2018,744,364.
11 Fernandes G E, Lee D J, Kim J H, et al. Journal of Materials Science,2013,48(6),2536.
12 Zhang Z, Xu M, Ruan X, et al. Ceramics International,2016,43(3),S0272884216320375.
13 Ondarçuhu T, Joachim C. EPL,2007,42(2),215.
14 Feng L, Li S, Li H, et al. Angewandte Chemie International Edition,2002,41(7),1221.
15 Ma P X, Zhang R. Journal of Biomedical Materials Research,1998,46(1),60.
16 Liu G J, Ding J F,Qiao L J, et al. Chemistry-A European Journal,1999,5(9),2740.
17 Ponhan W, Maensiri S. Solid State Sciences,2009,11(2),179.
18 Yayapao O, Thongtem T, Phuruangrat A, et al. Materials Letters,2013,90(1),83.
19 郭锐.稀土Ce、Sb掺杂SnO2透明导电膜的制备及性能研究.硕士学位论文,暨南大学,2007.
20 马格林,曹全喜,黄云霞.红外技术,2003,25(4),77.
21 刘嘉玮,王建江,许宝才,等.航空材料学报,2017,37(5),29.
22 陈乐,陆春华,房正刚,等.南京工业大学学报:自然科学版,2014,36(2),7.
23 Rong Q, Du Y, Ying W, et al. Carbon,2016,98,599.
24 云月厚,刘永林,张伟.材料工程,2008,2008(3),58.
25 何成功,邓联文,彭峰,等.微波学报,2014(S2),126.
26 Wen F S, Zhang F, Xiang J Y. Journal of Magnetism and Magnetic Materials,2013,343,281.
27 Wang T, Wang H, Chi X, et al. Carbon,2014,74(8),312.
28 张雪珂,向军,吴志鹏,等.无机材料学报,2017(12),70.
29 Wen F, Fang Z, Liu Z. The Journal of Physical Chemistry C,2011,115(29),14025.
[1] 张涛, 孙友谊, 刘亚青. 静电纺丝法制备壳聚糖/聚乙烯醇基复合碳纳米纤维及其电化学性能[J]. 材料导报, 2019, 33(Z2): 516-520.
[2] 李霖, 张旭, 曲飏, 郑维, 刘文娟, 张学斌. 静电纺丝技术与装置的研究进展[J]. 材料导报, 2019, 33(z1): 89-93.
[3] 胡银春, 程一竹, 王仁虎, 殷萌, 魏延, 杜晶晶, 黄棣, 陈维毅. 静电纺Ag@MOF-5/β-CD抗菌纤维膜的制备及性能[J]. 材料导报, 2019, 33(22): 3825-3828.
[4] 康剑, 崔帅, 魏恒勇, 卜景龙, 崔燚, 李慧, 杨柳, 罗婧, 季文玲. 电纺制备ZrO2多孔纤维及其导热性能[J]. 材料导报, 2019, 33(20): 3396-3400.
[5] 黄艳萍, 但年华, 但卫华. 静电纺丝制备胶原基复合纳米医用纤维的研究进展[J]. 材料导报, 2019, 33(19): 3322-3327.
[6] 陈莹, 侯翼, 成来飞. 针对静电纺丝SiC纤维纳米化的溶液参数优化设计[J]. 材料导报, 2019, 33(10): 1619-1623.
[7] 陈曼, 何明, 郭妍婷, 尹国强. 静电纺羽毛角蛋白/聚乙烯醇/聚氧化乙烯纳米纤维膜的交联改性及表征[J]. 《材料导报》期刊社, 2018, 32(8): 1218-1223.
[8] 张雪荣, 胡银春, 席少晖, 王兆伟, 战岩, 黄棣, 胡超凡, 魏延. 静电纺β-环糊精/石墨烯载银抗菌纤维膜的制备与表征[J]. 《材料导报》期刊社, 2018, 32(4): 545-548.
[9] 李婷婷, 闫梦雪, 吴宗翰, 姜茜, 林佳弘. 动态线性电极静电纺PVA纳米纤维的可纺性[J]. 材料导报, 2018, 32(24): 4363-4369.
[10] 何明,窦瑶,陈曼,尹国强,崔英德,陈循军. 羽毛角蛋白/PVA复合纳米纤维膜的制备及表征[J]. 《材料导报》期刊社, 2018, 32(2): 198-202.
[11] 杜敏, 宋滇, 谢玲, 周愉翔, 李德生, 朱纪欣. 静电纺丝在高效可逆离子电池储能中的应用[J]. 材料导报, 2018, 32(19): 3281-3294.
[12] 李延安, 杨汝禄, 张华, 孙海滨, 司维蒙, 李蛟. 煅烧温度对铁酸铋纤维形貌及性能的影响[J]. 《材料导报》期刊社, 2018, 32(14): 2340-2344.
[13] 孟佳意, 县泽宇, 李昕, 张德权. 光子晶体纤维的制备及应用*[J]. 《材料导报》期刊社, 2017, 31(5): 106-111.
[14] 戴剑锋,田西光,闫兴山,李维学,王青. 静电纺丝法制备的Co0.6Ni0.3Cu0.1Fe2O4和Co0.6Ni0.3Zn0.1Fe2O4纳米纤维的结构及磁性能*[J]. 材料导报编辑部, 2017, 31(22): 30-34.
[15] 王洪杰, 王闻宇, 王赫, 金欣, 李嘉禄, 林童, 朱正涛. 用于油水分离的静电纺纳米纤维膜研究进展*[J]. 《材料导报》期刊社, 2017, 31(19): 144-151.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] WU Tao, MAO Lili, WANG Haizeng. Preparation and Defluoridation Performance of Mg/Fe-LDHO/PES Membranous Adsorbent[J]. Materials Reports, 2017, 31(14): 26 -30 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed