Effects of the Porous Carbon Added Content on Electrochemical Performanceof Lithium Vanadium Phosphate as Cathode Materials Synthesized by Sol-geland Carbon Thermal Reduction Method
OU Xianguo, ZHOU Yushan, MAO Wenfeng, GU Xiaoyu, CHANG Shiyong, PEI Feng
GAC Automotive Research & Development Center, Guangzhou 510641
Abstract: In this paper, a novel composite as cathode material for lithium-ion batteries is preparaed by using a sol-gel and carbon thermal reduction me-thod to combine a good electrical conductive porous carbon with lithium vanadium phosphate. The new cathode has an initial specific capacity of 111.0 mA·h·g-1, and a capacity retention rate of 99.2% after 150 cycles at a rate of 0.5C. The composite cathode still has a specific capacity of 79.8 mA·h·g-1 and a capacity retention of 71.9% at 10C, showing a good fast charge/discharge performance. The simple preparation process, excellent electrochemical performance and high LVP content satisfies the requirements of the industrial applications for cathode materials on lithium-ion battery, and the composite is a effective material for the industrialization of the fast charge battery.
1 Zhang X, Berkemeier F, Balducci A. Chemsuschem,2014,7(6),1710. 2 Zhou Y, Rui X, Sun W, et al. ACS Nano,2015,9(4),4628. 3 Cogswell D A, Bazant M Z. ACS Nano,2011,6(3),2215. 4 Liu L, Strobridge F C, Borkiewicz O J, et al. Science,2014,344(6191),1252817. 5 蔡少伟.电源技术,2013,37(6),1065. 6 Kim J, Yoo J K, Jung Y S, et al. Advanced Energy Materials,2013,3(8),1004. 7 Rui X, Ding N, Liu J, et al. Electrochimica Acta,2010,55(7),2384. 8 李月姣,洪亮,吴锋.化学进展,2012,24(1),47. 9 Yin S, Grondey H, Strobel P, et al. Journal of the American Chemical Society,2003,125,10402. 10 Rui X, Yan Q, Skyllas-Kazacos M, et al. Journal of Power Sources,2014,258,19. 11 Novoselov K S, Geim A K, Morozov S V, et al. Science,2004,306(5696),666. 12 Yan J, Yuan W, Tang Z Y, et al. Journal of Power Sources,2012,209,251. 13 Deng C, Zhang S, Yang S Y, et al. Journal of Solid State Electrochemistry,2011,15(11-12),2633. 14 Kim M S, Bak S M, Lee S W, et al. Journal of Power Sources,2017,367,167. 15 Rui X, Li C, Liu J, et al. Electrochimica Acta,2010,55(22),6761. 16 Wei Q, An Q, Chen D, et al. Nano letters,2014,14(2),1042. 17 Ren M, Zhou Z, Gao X, et al. Journal of Physical Chemistry C,2008,112(14),5689. 18 Fei L, Sun L, Lu W, et al. Nanoscale,2014,6(21),12426. 19 顾晓瑜,洪晔,艾果,等.化学学报,2018,76,644. 20 Peng F, Zhao Y, Dong Y, et al. Journal of Power Sources,2006,162(1),651. 21 Saidi M Y, Barker J, Huang H, et al. Journal of Power Sources,2003,119(6),266. 22 Wu F, Wang F, Wu C, et al. Journal of Alloys & Compounds,2012,513,236. 23 Ni Q, Bai Y, Yang Z, et al. Journal of Alloys & Compounds,2017,729,49.