Please wait a minute...
材料导报  2019, Vol. 33 Issue (Z2): 32-37    
  无机非金属及其复合材料 |
生物质基炭气凝胶复合材料在超级电容器中应用的研究进展
孔令宇1, 黄慧娟1, 杨喜2, 马建锋1, 尚莉莉1, 刘杏娥1
1 国际竹藤中心,竹藤科学与技术重点实验室,北京 100102;
2 中南林业科技大学材料科学与工程学院, 长沙 410211
Research Progress in Application of Biomass Based Carbon Aerogel Compositesin Supercapacitors
KONG Lingyu1, HUANG Huijuan1, YANG Xi2, MA Jianfeng1, SHANG Lili1, LIU Xing’e1
1 Key Laboratory of Bamboo and Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing 100102;
2 School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410211
下载:  全 文 ( PDF ) ( 2010KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 生物质基炭气凝胶环境友好、成本低廉,不仅具有稳定性高、导电性好、比表面积大和孔隙结构可调节的特点,还兼具力学性能稳定、弹性好的优势,是制备复合材料的一种优良基底材料。近年来,研究人员利用生物质基炭气凝胶的这些特点,通过负载理论比电容较高的金属化合物、导电聚合物和导电性能良好、力学性能稳定的石墨烯等材料以及掺杂杂原子的方法开发了一系列复合材料,并将其应用在超级电容器中,取得了一定的进展。本文综述了生物质基炭气凝胶复合过渡金属化合物、导电聚合物、石墨烯以及掺杂杂原子的方法,分析了不同制备方法的优势与弊端,总结了不同种类的生物质基炭气凝胶复合材料在超级电容器领域的应用,最后针对生物质基炭气凝胶复合材料的制备及在超级电容器应用中所面临的问题,对未来发展趋势进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孔令宇
黄慧娟
杨喜
马建锋
尚莉莉
刘杏娥
关键词:  生物质基炭气凝胶  复合  制备方法  超级电容器    
Abstract: Biomass-based carbon aerogel is environmentally friendly and low cost that not only has the advantages of high stability, good conductivity, large specific surface area and adjustable pore structure, but is also characterized by its stable mechanical properties and good elasticity, and is also an excellent basic material for the preparation of composite materials. In recent years, researchers have developed a series of composites using metal compounds and conducting redox polymers with high specific capacitance, graphene with good electrical conductivity and stable mechanical properties, as well as doping hetero atoms supported on biomass-based carbon aerogel. Moreover, progress has been made in applying these composite materials to supercapacitors. In this paper, the preparation methods of transition metal compounds, conductive polymers, graphene, and doping heteroatoms supported on biomass-based carbon aerogel were reviewed. The advantages and disadvantages of different preparation methods were analyzed. Moreover, the applications of different biomass-based carbon aerogel composites in supercapacitors were summarized. Finally, the problems in the preparation of biomass-based carbon aerogel composites and in the application of supercapacitors were discussed, and the future development trend was prospected.
Key words:  biomass based carbon aerogel    composite    preparation method    supercapacitor
               出版日期:  2019-11-25      发布日期:  2019-11-25
ZTFLH:  TQ127.11  
  TM35  
基金资助: “十三五”国家重点研发计划(2017YFD0600804)
通讯作者:  liuxinge@icbr.ac.cn   
作者简介:  孔令宇, 2017年6月毕业于安徽农业大学,获得工学学士学位。现为中国林业科学研究院国际竹藤中心硕士研究生。主要研究方向为生物质基碳材料。
刘杏娥,博士,研究员,博士研究生导师。1997年本科毕业于安徽农业大学,2005年在中国林业科学研究院木材科学与技术专业取得博士学位,2006年至2007年在中国林业科学研究院进行博士后研究工作。2014年至今在国际竹藤中心工作,主要从事竹藤材结构与性能、竹藤等生物质基炭材料方面的研究工作。在国内外学术期刊上发表论文40余篇,参与编写专著3部。
引用本文:    
孔令宇, 黄慧娟, 杨喜, 马建锋, 尚莉莉, 刘杏娥. 生物质基炭气凝胶复合材料在超级电容器中应用的研究进展[J]. 材料导报, 2019, 33(Z2): 32-37.
KONG Lingyu, HUANG Huijuan, YANG Xi, MA Jianfeng, SHANG Lili, LIU Xing’e. Research Progress in Application of Biomass Based Carbon Aerogel Compositesin Supercapacitors. Materials Reports, 2019, 33(Z2): 32-37.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2019/V33/IZ2/32
1 González A, Goikolea E, Barrena J A, et al. Renewable & Sustainable Energy Reviews,2016,58(2016),1189.
2 Sharma P, Bhatti T S. Energy Conversion and Management,2010,51(12),2901.
3 Francois B, Elzbieta F. 超级电容器:材料、系统及应用,机械工业出版社,2014.
4 Pandolfo A G, Hollenkamp A F. Journal of Power Sources,2006,157(1),11.
5 Wang G P, Zhang L, Zhang J J. Chemical Society Reviews,2012,41,797.
6 Meng Q F, Cai K F, Chen Y X, et al. Nano Energy,2017,36,268.
7 Frackowiak E, Béguin F. Carbon,2001,39(6),937.
8 Zhi M J, Xiang C C, Li J T, et al. Nanoscale,2012,5(1),72.
9 Pekala R W. Journal of Materials Science,1989,24(9),3221.
10 Mayer S T, Pekala R W, Kaschmitter J L. Journal of the Electrochemical Society,1993,140,446.
11 杨喜,刘杏娥,马建锋,等.材料导报:综述篇,2017,31(4),45.
12 Wu X L, Wen T, Guo H L, et al. ACS Nano,2013,7(4),3589.
13 Hu Y J, Xing T, Hao Z, et al. ACS Sustainable Chemistry & Enginee-ring,2017,5(10),8663.
14 Zhang G, Lou X W. Scientific Reports,2013,3(3),1470.
15 Sun M, Tie J J, Cheng G, et al. Journal of Materials Chemistry A,2015,3,1730.
16 Favier F, Lei Y, Fournier C, et al. Microporous & Mesoporous Materials,2007,110(1),167.
17 Wen Y X, Qin T F, Wang Z L, et al. Journal of Alloys and Compounds,2017,699,126.
18 Zhang Y Y, Zuo L Z, Zhang L S, et al. Nano Research,2016,9(9),2747.
19 Lai F L, Miao Y E, Zuo L Z, et al. Small,2016,12(24),3235.
20 Zhang H, Cao G P, Wang Z Y, et al. Nano Letters,2008,8(9),2664.
21 Shen L F, Wang J, Xu G Y, et al. Advanced Energy Materials,2015,5(3),1400977.
22 Ren Y M, Xu Q, Zhang J M, et al. ACS Applied Materials & Interfaces,2014,6(12),9689.
23 Hao P, Zhao Z H, Li L Y, et al. Nanoscale,2015,7(34),14401.
24 郝品.可再生资源制备的碳气凝胶及其复合电极材料的电化学性能研究.博士学位论文,山东大学,2015.
25 Snook G A, Kao P, Best A S. Journal of Power Sources,2011,196(1),1.
26 Hughes M, Chen G Z, Shaffer M S P, et al. Chemistry of Materials,2002,14(4),1610.
27 An H F, Wang Y, Wang X Y, et al. Journal of Solid State Electrochemistry,2010,14(4),651.
28 Yu M, Han Y Y, Yao L, et al. Carbohydrate Polymers,2018,199,555.
29 Hao P, Zhao Z H, Leng Y H, et al. Nano Energy,2015,15,9.
30 Chen L F, Huang Z H, Liang H W, et al.Advanced Functional Materials,2015,24(32),5104.
31 Hu Y J, Tong X, Zhuo H, et al. RSC Advances,2016,6,15788.
32 Paraknowitsch J P, Thomas A. Energy & Environmental Science,2013,6(10),2839.
33 冯晨辰,吴爱民,黄昊. 材料导报:综述篇,2016,30(1),143.
34 Paraknowitsch J P, Thomas A, Antonietti M. Journal of Materials Che-mistry,2010,20,6746.
35 李思明,侯朝霞,王少洪,等.材料导报:综述篇,2014,28(12),40.
36 刘欣欣,王小平,王丽军,等.材料导报:综述篇,2011,25(12),92.
37 Guo C X, Li C M. Energy & Environmental Science,2011,4(11),4504.
38 Zhang K, Zhang L L, Zhao X S, et al. Chemistry of Materials,2010,22(4),1392.
39 Li X, Tang Y, Song J, et al. Carbon,2017,129,236.
40 Wang J, Ran R, Sunarso J, et al. Journal of Power Sources,2017,347,259.
41 Song W L, Li X G, Fan L Z. Energy Storage Materials,2016,3,113.
42 Ji J Y, Li Y, Peng W C, et al. Advanced Materials,2015,27(36),5264.
43 Xia X H, Tu J P, Mai Y J, et al. Journal of Materials Chemistry,2011,21,9319.
44 Qu Q T, Zhang P, Wang B, et al. Journal of Physical Chemistry C,2009,113(31),14020.
45 Yang J Q, Duan X C, Qin Q, et al. Journal of Materials Chemistry A,2013,1(27),7880.
46 Zhang L, Wu H B, Lou X W. Chemical Communications,2012,48(55),6912.
47 Hu C C, Chen J C, Chang K H. Journal of Power Sources,2013,221,128.
48 Zhang L L, Zhao X S. Chemical Society Reviews,2009,38(9),2520.
49 Zeng Y P, Wang L, Wang Z Y, et al. Materials Today Communications,2015,5,70.
50 Hao P, Tian J, Sang Y H, et al. Nanoscale,2016,8(36),16292.
51 Zuo L Z, Fan W, Zhang Y F, et al. Nanoscale,2017,9(13),4445.
52 Zhuo H, Hu Y J, Chen Z H, et al. Carbohydrate Polymers,2019,215,322.
53 Zhang F, Liu T, Zhang J, et al. Carbon,2019,147,451.
54 Du J, Liu L, Hu Z, et al.ACS Sustainable Chemistry & Engineering,2018,6(3),4008.
55 Sahu V, Marichi R B, Singh G, et al. Electrochimica Acta,2017,240,146.
56 Meng Y N, Kai W, Zhang Y J, et al. Advanced Materials,2013,25(48),6985.
57 Ge J, Cheng G H, Chen L W. Nanoscale,2011,3(8),3084.
58 Yan X B, Tai Z X, Chen J T, et al. Nanoscale,2011,3(1),212.
59 Cheng Q, Tang J, Ma J, et al. Journal of Physical Chemistry C,2011,115(47),23584.
60 Wu Z Y, Li C, Liang H W, et al. Angewandte Chemie International Edition,2013,125(10),2997.
61 Chen C J, Song J W, Zhu S Z, et al. Chem,2018,4(3),544.
62 Chen Z H, Peng X W, Zhang X T, et al. Carbohydrate Polymers,2017,170,107.
63 Long C L, Qi D P, Wei T, et al. Advanced Functional Materials,2014,24(25),3953.
64 Zhang Y M, Wang F, Zhu H, et al. Applied Surface Science,2017,426,99.
65 Yang X, Jiang Z H, Fei B H, et al. Electrochimica Acta,2018,282,813.
66 Gao K Z, Shao Z Q, Li J, et al. Journal of Materials Chemistry A,2013,1(1),63.
[1] 张英杰,吴昊,曾晓苑,李雪,董鹏,肖杰. 直接碳固体氧化物燃料电池阳极材料的研究进展[J]. 材料导报, 2020, 34(3): 3090-3098.
[2] 贾卫平, 吴蒙华, 贾振元, 董桂馥, 李晓鹏, 周绍安. 超声功率对多场耦合作用下脉冲电沉积Ni-ZrO2纳米复合镀层性能的影响[J]. 材料导报, 2020, 34(2): 2017-2022.
[3] 季根顺, 陈晓龙, 贾建刚, 李小龙, 龚静博, 郝相忠. 液相汽化TG-CVI法制备C/C复合材料的组织和性能[J]. 材料导报, 2020, 34(2): 2029-2033.
[4] 祝一锋, 黄小钢, 朱文仙, 张攀攀, 唐华东. 原位光催化聚合制备聚(N-乙烯基咔唑)/TiO2纳米复合材料及其光催化性能[J]. 材料导报, 2020, 34(2): 2147-2152.
[5] 齐云霞, 赵小伟, 杨永新, 黄冬维, 赵辉玲, 丁海生, 程广龙. TiO2基光电化学传感器电极结构调控的研究进展[J]. 材料导报, 2019, 33(Z2): 48-52.
[6] 郑孝源, 赵子龙, 任志英. 碳掺杂TiO2纳米管的制备和表征及在污水处理方面的应用[J]. 材料导报, 2019, 33(Z2): 113-115.
[7] 刘艳, 宫庆华, 周国伟. 不同形貌CeO2基纳米复合材料的制备及应用研究进展[J]. 材料导报, 2019, 33(Z2): 125-129.
[8] 樊伟, 田甜, 崔艳芳, 周淑娟. 采用爆炸喷涂法揭示新型(Sm1-XGdX)2Zr2O7缓烧蚀材料隔热机理[J]. 材料导报, 2019, 33(Z2): 134-137.
[9] 张绪, 冯瑞, 张晔, 郭卫, 刘富. 民机复合材料帽型长桁压缩承载力分析与试验[J]. 材料导报, 2019, 33(Z2): 215-221.
[10] 王林, 王梦尧, 王佩勋, 卢京宇. 偶联剂改性玄武岩纤维增强水泥基复合材料力学性能[J]. 材料导报, 2019, 33(Z2): 273-277.
[11] 韩艳, 王龙龙, 刘志浩. CFRP板加固含I型裂纹混凝土的断裂扩展规律[J]. 材料导报, 2019, 33(Z2): 304-308.
[12] 倪嘉, 柴皓, 史昆, 赵军, 刘时兵, 刘鸿羽, 崔亚迪. 颗粒增强钛基复合材料的研究进展[J]. 材料导报, 2019, 33(Z2): 369-373.
[13] 张涛, 孙友谊, 刘亚青. 静电纺丝法制备壳聚糖/聚乙烯醇基复合碳纳米纤维及其电化学性能[J]. 材料导报, 2019, 33(Z2): 516-520.
[14] 方艳, 徐水, 吴婷芳, 朱勇. 丝胶蛋白/羟基磷灰石/聚己内酯复合支架材料的制备及表征[J]. 材料导报, 2019, 33(Z2): 533-537.
[15] 杨立, 汪鹏生, 张浩, 王丰, 杨雄刚, 冯江涛, 华堃池, 胡永成. 生物活性玻璃骨材料力学性能及成骨作用改性的研究进展[J]. 材料导报, 2019, 33(Z2): 553-558.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] WU Tao, MAO Lili, WANG Haizeng. Preparation and Defluoridation Performance of Mg/Fe-LDHO/PES Membranous Adsorbent[J]. Materials Reports, 2017, 31(14): 26 -30 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed