Please wait a minute...
材料导报  2019, Vol. 33 Issue (Z2): 309-316    
  无机非金属及其复合材料 |
钢筋锈蚀率对钢筋与混凝土黏结性能的影响
王朝阳1,2, 周全1, 杨鸥2, 霍静思2,3, 王海涛2
1 中国建筑西南设计研究院有限公司湖南分公司,长沙 410008;
2 湖南大学土木工程学院,教育部建筑安全与节能重点实验室,长沙 410082;
3 华侨大学土木工程学院,厦门 361021
Effect of Corrosion Rate of Steel Bar on Bond Performance Between Steel Barand Concrete
WANG Zhaoyang1,2, ZHOU Quan1, YANG Ou2, HUO Jingsi2,3, WANG Haitao2
1 China Southwest Architectural Design and Research Institute Corp., Ltd., Hunan Branch, Changsha 410008;
2 China Ministry of Education Key Laboratory of Building Safety and Energy Efficiency, College of Civil Engineering, Hunan University, Changsha 410082;
3 College of Civil Engineering, Huaqiao University, Xiamen 361021
下载:  全 文 ( PDF ) ( 3478KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为研究锈蚀对钢筋与混凝土黏结性能的影响,制作了24个200 mm×200 mm×200 mm的中心拉拔试件及6个标准立方体试块。通过电流诱导钢筋锈蚀并控制其锈蚀量,得到理论锈蚀率为0%、0.3%、0.5%、1%、2%、5%、8%、15%的拉拔试件并完成拉拔试验。通过割线刚度的方法研究了锈蚀率对黏结刚度的影响,分析了峰前拉力功随锈蚀率变化的规律。通过对已有研究中拔出试件的黏结强度退化数据进行统计,得到了三段式黏结强度退化试验模型及保守模型。提出了简化的三段式黏结-滑移本构模型并考虑了锈蚀率对残余黏结强度的影响。试验结果表明:钢筋与混凝土的黏结刚度达到峰值后,随着锈蚀率的增大,其退化速率可划分为2个阶段。峰前拉力功随锈蚀增大呈现先减小后增大再减小趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王朝阳
周全
杨鸥
霍静思
王海涛
关键词:  钢筋混凝土  锈蚀  黏结强度  黏结刚度  本构模型    
Abstract: To investigate the influence of corrosion of steel bar on the bonding performance between steel bar and concrete, 24 central pull-out test spe-cimens as well as other 6 specimens for compressive strength were cast. Pull-out test were conducted to study the bond behavior between concrete and steel bar which was corroded using current accelerate method to control corrosion with the expected corrosion rate of 0%,0.3%,0.5%,1%,2%,5%,8%,15%.The influence of corrosion rate on bond stiffness was studied by method of secant stiffness.The influence of corrosion on work of pull-out force before peak slip was also studied.A simplified three-stage test method and constitutive model of bond strength degeneration were proposed.Furthermore,a three-stage bond-slip constitutive relation was proposed considering influence of corrosion on residual bond strength. The test results show that degradation speed of bond stiffness between concrete and rebar can be divided into two stages after reaching peak.The work of pull-out force before peak slip decline at the beginning then increase and finally decrease with corrosion increasing.
Key words:  reinforced concrete    corrosion    bond strength    bond stiffness    constitutive model
               出版日期:  2019-11-25      发布日期:  2019-11-25
ZTFLH:  TU375.4  
基金资助: 国家自然科学基金(51578229)
通讯作者:  ouyanghnu@hnu.edu.cn   
作者简介:  王朝阳,2018年6月毕业于湖南大学,获得工学硕士学位。于2018年7月在中国建筑西南设计研究院有限公司参加工作,主要从事结构设计、结构超限及节点分析等工作。
杨鸥,湖南大学副教授,硕士研究生导师。2010年10月毕业于哈尔滨工业大学,获工学博士学位,现主要研究锈蚀钢筋混凝土结构受力性能及钢筋混凝土构件疲劳损伤性能评估。
引用本文:    
王朝阳, 周全, 杨鸥, 霍静思, 王海涛. 钢筋锈蚀率对钢筋与混凝土黏结性能的影响[J]. 材料导报, 2019, 33(Z2): 309-316.
WANG Zhaoyang, ZHOU Quan, YANG Ou, HUO Jingsi, WANG Haitao. Effect of Corrosion Rate of Steel Bar on Bond Performance Between Steel Barand Concrete. Materials Reports, 2019, 33(Z2): 309-316.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2019/V33/IZ2/309
1 王培铭,庞敏,刘贤萍.硅酸盐学报,2015(2),152.
2 王子潇,刘志勇,宋宁,等.硅酸盐学报,2017,45(5),668.
3 Ma Y, Guo Z, Wang L, et al. Construction & Building Materials,2017,152,240.
4 王朝阳,杨鸥,霍静思.哈尔滨工业大学学报,2018,50(8),150.
5 Coccia S, Imperatore S, Rinaldi Z. Materials & Structures,2016,49(1-2),537.
6 何世钦,贡金鑫.哈尔滨工业大学学报,2006,38(12),2167.
7 Jin W L, Zhao Y X. Journal of Zhejiang Univeristity,2001,2(3),298.
8 Fang C, Lundgren K, Chen L, et al. Cement & Concrete Research,2004,34(11),2159.
9 Zhao Y, Lin H, Wu K, et al. Construction & Building Materials,2013,48(11),348.
10 Tondolo F. Construction & Building Materials,2015,93,926.
11 Wu Y Z, Lv H L, Zhou S C, et al. Construction & Building Materials,2016,119,89.
12 王海涛,王朝阳,霍静思,等.中国专利, ZL2017209002270,2018.
13 Harajli M H. ACI Structural Journal,2004,101(5),595.
14 肖建庄,黄均亮,赵勇.同济大学学报:自然科学版,2009,37(10),1296.
15 Al-Sulaimani G J, Kaleemullah M, Basunbul I A, et al. ACI Structural Journal,1990,87(2),220.
16 金伟良.腐蚀混凝土结构学,科学出版社,2011.
17 Lan C, Kim J H J, Yi S T. Cement & Concrete Composites,2008,30(7),603.
18 梁岩,罗小勇,肖小琼,等.工业建筑,2012,42(10),95.
19 Horrigmore G, Sather I, Antonsen R, et al. In: Sustainable Bridges WP3 D3.10. Norway,2007.
20 Bhargava K, Ghosh A K, Mori Y, et al. Journal of Structural Enginee-ring,2008,134(2),221.
21 Lan C, Cho S H, Kim J H J, et al. Engineering Structures,2004,26(8),1013.
22 Auyeung Y, Balaguru P, Chung L. ACI Structural Journal,2000,97(2),214.
23 肖建庄,雷斌.建筑结构学报,2011,32(1),58.
24 Lin H, Zhao Y, Ožbolt J, et al. Engineering Structures,2017,140,390.
25 Wu Y Z, Lv H L, Zhou S C, et al. Construction & Building Materials,2016,119,89.
26 徐育才.钢筋锈蚀拉拔试验及其粘结性能研究.硕士学位论文,华中科技大学,2006.
27 吴凡.荷载与环境耦合作用下锈蚀钢筋与混凝土的黏结滑移本构关系研究.硕士学位论文,重庆交通大学,2016.
28 赵凯龙.考虑横向约束的钢筋混凝土锈胀开裂模型及黏结性能.硕士学位论文,浙江大学,2017.
29 张白,陈俊,杨鸥.硅酸盐通报,2018,37(2),417.
[1] 秦晓川,刘加平,石亮,穆松,蔡景顺,吴贞杰,周霄骋,刘建忠. 荷载与氯离子耦合作用下混凝土耐久性试验方法与装置的研究进展[J]. 材料导报, 2020, 34(3): 3106-3115.
[2] 孙杨,乔国富. 锈蚀钢筋与混凝土粘结性能研究综述[J]. 材料导报, 2020, 34(3): 3116-3125.
[3] 万镇昂, 马昆林, 龙广成, 谢友均. 基于Weibull分布和残余应变的SCC疲劳损伤本构模型[J]. 材料导报, 2019, 33(4): 634-638.
[4] 乔巍, 姚卫星, 马铭泽. 复合材料残余应力和固化变形数值模拟及本构模型评价[J]. 材料导报, 2019, 33(24): 4193-4198.
[5] 王林峰,曾韬睿,翁其能. 基于统计损伤理论的饱和细粒砂岩本构模型研究[J]. 材料导报, 2019, 33(22): 3727-3731.
[6] 陈俊, 张白, 杨鸥, 龙士国, 许福, 杨才千. 黏结长度对锈蚀钢筋与混凝土间黏结性能的影响[J]. 材料导报, 2019, 33(22): 3744-3751.
[7] 崔涛, 何浩祥, 闫维明, 钱增志, 周大兴. 混杂纤维水泥基复合材料受压损伤本构模型及试验验证[J]. 材料导报, 2019, 33(20): 3413-3418.
[8] 王潇舷, 金祖权, 姜玉丹, 陈凡秀. 基于DIC与应变测试的混凝土中钢筋锈胀应力分析[J]. 材料导报, 2019, 33(16): 2690-2696.
[9] 辛景舟, 周建庭, 周应新, 苏欣, 冉文兴. 考虑材料劣化的钢筋混凝土压弯构件承载力演化试验研究[J]. 材料导报, 2019, 33(14): 2362-2369.
[10] 陈龙, 司家勇, 刘松浩, 廖凯. 挤压态FGH4096合金的热变形行为及热加工图[J]. 材料导报, 2019, 33(12): 2047-2054.
[11] 李云飞, 曾祥国. 基于不可逆热力学的Ni-Ti合金动态本构模型及其有限元实现[J]. 材料导报, 2019, 33(10): 1676-1680.
[12] 周蕊, 李璐璐, 谢东, 张建国, 吴孟丽. 基于修正Drucker-Prager Cap模型的金属粉末成形本构模型参数确定方法[J]. 材料导报, 2018, 32(6): 1020-1025.
[13] 李哲, 金祖权, 邵爽爽, 徐翔波. 海洋环境下混凝土中钢筋锈蚀机理及监测技术概述[J]. 材料导报, 2018, 32(23): 4170-4181.
[14] 郑山锁, 裴培, 张艺欣, 董立国, 郑捷, 董方园. 钢筋混凝土粘结滑移研究综述[J]. 材料导报, 2018, 32(23): 4182-4191.
[15] 江世永, 龚宏伟, 姚未来, 陶帅, 蔡涛. ECC材料力学性能与本构关系研究进展[J]. 材料导报, 2018, 32(23): 4192-4204.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] WU Tao, MAO Lili, WANG Haizeng. Preparation and Defluoridation Performance of Mg/Fe-LDHO/PES Membranous Adsorbent[J]. Materials Reports, 2017, 31(14): 26 -30 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed