Please wait a minute...
材料导报  2019, Vol. 33 Issue (Z2): 13-19    
  无机非金属及其复合材料 |
光催化分解水制氢催化剂的研究进展
刘大波1, 苏向东2, 赵宏龙1
1 贵州大学材料与冶金学院,贵阳 550000;
2 贵州省轻金属制备技术重点实验室,贵阳 550000
Research Progress in the Photocatalysts for Hydrogen Production by PhotocatalyticDecomposition of Water
LIU Dabo1, SU Xiangdong2, ZHAO Honglong1
1 College of Materials and Metallurgy, Guizhou University, Guiyang 550000;
2 Key Laboratory of Light Materials Technology of Guizhou Province, Guiyang 550000
下载:  全 文 ( PDF ) ( 2199KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 面对石油、煤炭和天然气等不可再生能源的日益枯竭和其带来的环境污染问题,人们不得不寻找新的化石燃料替代品。氢能是一种清洁、可再生燃料,在未来具有替代化石燃料的巨大潜力。利用光催化活性材料光解水制氢是一种将太阳能转化为氢能的有效方式。
然而,用于光解水制氢的大多数催化材料仍然存在对太阳能利用率低且光生电子和空穴对易于复合等问题,这些问题导致产氢效率较低,从而严重限制了光催化剂的实际运用。因此,开发具有低成本、环境友好、可见光响应和良好性能的光催化剂则成为当前光解水制氢催化剂的研究重点。
目前用于光解水制氢的催化剂主要包括金属氧化物、金属硫化物、金属氮(氮氧)化物、石墨碳氮化物和新型异质结构光催化剂等。其中,金属氧化物中TiO2作为光解水制氢的传统光催化剂而被广泛研究;金属硫化物因其窄带隙和良好的带隙位置,在光解水制氢中表现出良好的催化活性,其研究主要集中在CdS、ZnS及其固溶体上;金属氮(氮氧)化物具有理想的可见光全解水能带结构,需对其进行改性从而体现出全解水活性;石墨碳氮化物是一种新型的非金属可见光催化剂,由于其在制氢方面的巨大潜力而受到了人们的关注。此外,将半导体复合构建二元或多元能够高效分离光生载流子的新型异质结构复合光催化剂也是一个非常活跃的研究领域。
本文结合近年来国内外光解水制氢催化剂的研究现状,综述了光解水制氢催化剂的研究进展,分别对每类催化剂的特点和研究内容进行了总结,并介绍了某些催化剂的制备工艺和改性策略,最后总结了当前光解水制氢催化剂所面临的问题并对其未来的发展方向进行了展望,以期为设计制备高效、稳定的光催化制氢材料提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘大波
苏向东
赵宏龙
关键词:  太阳能  水分解  制氢  光催化剂    
Abstract: With the decrease of non-renewable energy resources such as oil, coal and natural gas and the environmental pollution problem caused by them, the utilization of new alternatives to fossil fuels deserves intense attention. Hydrogen is a clean, renewable fuel that has the great potential to replace fossil fuels in the future. It is an efficient way to convert solar energy into hydrogen energy by photocatalytic hydrogen evolution.
However, most of the photocatalysts for hydrogen production still have problems such as low utilization of solar energy and easy recombination of photogenerated electrons and hole pairs, which leads to lower hydrogen production efficiency, thereby seriously restricting the practical application of photocatalysts. Therefore, the development of photocatalysts with low cost, environmental friendliness, visible light response and good performance has become the focus of research on photocatalytic hydrogen production.
Recent photocatalysts for hydrogen production mainly include metal oxides, metal sulfides, metal nitrogen (nitrogen and oxygen) compounds, graphite carbonitrides and novel heterostructure photocatalysts. Titanium dioxide, as a conventional photocatalyst for hydrogen production, has been studied. Metal sulfides exhibit good photocatalytic activity in hydrogen production due to their narrow band gap and good band gap positions, and the research mainly focuses on CdS, ZnS and their solid solutions. Metal nitrogen (nitrogen and oxygen) compounds have ideal visible full-hydrolysis energy band structure, which needs to be modified to show full-hydrolysis activity. Graphite carbonitride is a new type of non-metallic visible-light photocatalyst, which has been attracted widespread attention for its great potential in hydrogen production. In addition, the construction of binary or multicomponent heterostructure composite photocatalysts which can efficiently separate photogenerated carriers by semiconductor composite has also been extensively studied.
In this review, according to the research status of photocatalysts for hydrogen production at home and abroad in recent years, the research progress of photocatalysts was reviewed. The characteristics and research progress of each type of photocatalysts were summarized, and the preparation process and modification strategy of some photocatalysts were analyzed. Finally, the existing problems of photocatalysts were put forward and the future research prospects are also suggested, and is expected to provide reference for the design and preparation of efficient and stable photocatalytic materials.
Key words:  solar energy    water splitting    hydrogen evolution    photocatalysts
               出版日期:  2019-11-25      发布日期:  2019-11-25
ZTFLH:  O643.36  
基金资助: 贵州省科技计划项目(黔科合平台人才[2017]5789-02);贵州省高层次创新型人才培养对象项目-百层次(0201004016004);贵州省轻金属材料制备技术重点实验室项目(0201019016001)
通讯作者:  suxiangdong01@sina.com   
作者简介:  刘大波,2017年毕业于南昌航空大学,获得工学学士学位。现为贵州大学材料与冶金学院硕士研究生,在苏向东研究员指导下进行研究。目前主要从事光催化分解水制氢材料的研究。
苏向东,贵州理工学院副院长、硕士研究生导师。1987年贵州工学院冶金系毕业,2008年北京航空航天大学理学院材料物理与化学专业研究生毕业,获工学博士学位,之后为中国科学院过程工程研究所“西部之光”访问学者,中国材料研究学会理事,司法部物质物理测试分析司法鉴定人。曾荣获贵州省人民政府科技成果重奖,贵州省科技进步奖一等奖,中国有色金属工业科学技术奖一等奖,贵州省第二届青年创新人才奖,贵州省直工委优秀共产党员等。
引用本文:    
刘大波, 苏向东, 赵宏龙. 光催化分解水制氢催化剂的研究进展[J]. 材料导报, 2019, 33(Z2): 13-19.
LIU Dabo, SU Xiangdong, ZHAO Honglong. Research Progress in the Photocatalysts for Hydrogen Production by PhotocatalyticDecomposition of Water. Materials Reports, 2019, 33(Z2): 13-19.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2019/V33/IZ2/13
1 Parida B, Iniyan S, Goic R. Renewable & Sustainable Energy Reviews,2011,15(3),1625.
2 Fujishima A, Honda K. Nature,1972,238(5358),37.
3 Li R G. Catalysis,2017,38(1),5.
4 Zhou H, Yan R, Zhang D, et al. Chemistry-A European Journal,2016,22(29),9870.
5 Tentu R D, Basu S. Electochemistry,2017,5,56.
6 Mishra M, Chun D M. Applied Catalysis A General,2015,498,126.
7 Tahir M B, Nabi G, Khalid N R. Materials Science in Semiconductor Processing,2018,84,36.
8 Lu X H, Wang G M, Xie S L, et al. Chemical Communications,2012,48(62),7717.
9 Monfort O, Pop L C, Sfaelou S, et al. Chemical Engineering Journal,2016,286,91.
10 Huang Y, Yan C F, Guo C Q, et al. International Journal of Hydrogen Energy,2016,42(7),4007.
11 Kohlsdorf A, Taffa D H, Wark M. Journal of Photochemistry and Photo-biology A: Chemistry,2018,336,41.
12 Zhao Z C, Yang C L, Meng Q T, et al. Spectrochimica Acta Part A,2019,211,71.
13 Tahereh J, Ehsan M, Alireza A, et al. Molecules,2016,21(7),900.
14 Wang J, Zhang D K, Deng J K, et al. Journal of Colloid and Interface Science,2018,516,215.
15 Zhu J F, Zäch M. Current Opinion in Colloid & Interface Science,2009,14(4),260.
16 Zhu Z, Kao C T, Tang B H, et al. Ceramics International,2016,42(6),6749.
17 Melvin A A, Illath K, Das T, et al. Nanoscale,2015,7,13477.
18 Saravanan R, Manoj D, Qin J Q, et al. Process Safety and Environmental Protection,2018,120,339.
19 Al-Azri Z H N, Chen W T, Chan A, et al. Journal of Catalysis,2015,329,355.
20 Chen W T, Chan A, Dongxiao S W, et al. Journal of Catalysis,2018,367,27.
21 Kumaravel V, Mathew S, Bartlett J, et al. Applied Catalysis B: Environmental,2019,244,1021.
22 Huang J Q, Li G J, Zhou Z F, et al. Chemical Engineering Journal,2018,337,282.
23 Rather R A, Singh S, Pal B. Solar Energy Materials and Solar Cells,2017,160,463.
24 Wang L Z, Zhao J H, Liu H M, et al. Journal of the Taiwan Institute of Chemical Engineers,2018,93,590.
25 Wang C, Hu Q Q, Huang J Q, et al. Applied Surface Science,2013,283,188.
26 Xing Z P, Li Z Z, Wu X Y, et al. International Journal of Hydrogen Energy,2016,41(3),1535.
27 Sudha D, Sivakumar P. Chemical Engineering and Processing,2015,97,112.
28 Hu X L, Lu S C, Tian J, et al. Applied Catalysis B: Environmental,2019,241,329.
29 Li X N, Huang H L, Bibi R. Applied Surface Science,2019,576,378.
30 Qian X H, Wang C X, Jie H. Materials Letters,2019,247,122.
31 Do J Y, Chava R K, Kim S K, et al. Applied Surface Science,2018,451,86.
32 Jiang F, Pan B, You D T, et al. Catalysis Communications,2016,85,39.
33 Zi Y, Qiang H, Xiao D X. Journal of Materials Chemistry A,2015,3(31),15824.
34 Wang P F, Wu T F, Ao Y H, et al. Renewable Energy,2019,131,180.
35 He K, Wang M, Guo L J. Chemical Engineering Journal,2015,279,747.
36 Shi J W, Sun D K, Zhou J Y, et al. Chemical Engineering Journal,2019,364,11.
37 Ma B J, Zhang R S, Lin K Y, et al. Chinese Journal of Catalysis,2018,39(3),527.
38 Wei R B, Huang Z L, Gu G H, et al. Applied Catalysis B: Environmental,2018,231,101.
39 Lee G J, Wu J J. Powder Technology,2017,318,8.
40 Kimi M, Yuliati L, Shamsuddin M. Journal of Energy Chemistry,2016,25(3),512.
41 Muruganandham M, Kusumoto Y. The Journal of Physical Chemistry C,2009,113(36),16144.
42 Song L M, Zhang S J, Chen B, et al. Catalysis Communications,2010,11(5),387.
43 Wang L, Wang W Z, Shang M, et al. International Journal of Hydrogen Energy,2010,35(1),19.
44 Li N X, Zhou B Y, Guo P H, et al. International Journal of Hydrogen Energy,2013,38(26),11268.
45 Maeda K Z, Lu D L, Domen K. Chemistry-A European Journal,2013,19(16),4986.
46 Maeda K, Terashima H, Kase K, et al. Applied Catalysis A General,2009,357(2),206.
47 Dao V D, Chi N T P L, Thuan D V, et al. Journal of Alloys and Compounds,2019,775,942.
48 Pan C, Takata T, Nakabayashi M, et al. Angewandte Chemie,2015,127(10),2998.
49 Xu J S, Pan C S, Takata T, et al. Chemical Communications,2015,51(33),7191.
50 Balaz S, Porter S H, Woodward P M, et al. Chemistry of Materials,2013,25(16),3337.
51 Chun W J, Ishikawa A, Fujisawa H, et al. ChemInform,2003,34(21),1798.
52 Higashi M, Domen K, Abe R. Energy & Environmental Science,2011,4(10),4138.
53 Ritala M, Kalsi P, Riihelä D, et al. Chemistry of Materials,1999,7(11),1712.
54 Fang Z W, Aspinall H C, Odedra R, et al. Journal of Crystal Growth,2011,331(1),1.
55 Feng X J, Latempa T J, Basham J I, et a. Nano Letters,2010,10(3),948.
56 Pinaud B A, Vailionis A, Jaramillo T F. Chemistry of Materials,2016,26(4),1576.
57 Kishida K, Watanabe T. Journal of Solid State Chemistry,2012,191,15.
58 Truc N T T, Tran D T, Hanh N T, et al. Hydrogen Energy,2018,43(33),15898.
59 Wang Z, Hou J G, Yang C, et al. Energy & Environmental Science,2013,6(7),2134.
60 Xiao M, Luo B, Thaweesak S, et al. Progress in Natural Science: Mate-rials International,2018,28(2),189.
61 Ye S, Wang R, Wu M Z, et al. Applied Surface Science,2015,358,15.
62 刘亚男.g-C3N4基复合催化剂的设计制备及其光催化性能研究.博士学位论文,中国科学技术大学,2018.
63 Rahman M Z, Kwong C W, Davey K, et al. Energy & Environmental Science,2016,9,709.
64 Tan C, Cao X, Wu X J, et al. Chemical Reviews,2017,117,6225.
65 Schwinghammer K, Mesch M B, Duppel V, et al. Journal of the American Chemical Society,2014,136(5),1730.
66 Huang D, Li Z H, Zeng G M, et al. Applied Catalysis B: Environmental,2019,240,153.
67 Han Q, Wang B, Gao J, et al. ACS Nano,2016,10(2),2745.
68 Xiao Y T, Tian G H, Li W, et al. Journal of the American Chemical So-ciety,2019,141(5),2508.
69 Wang Y Y, Zhao S, Zhang Y W, et al. Applied Surface Science,2018,440,258.
70 Yuan Y J, Shen Z K, Wu S T, et al. Applied Catalysis B: Environmental,2019,246,120.
71 史慧贤,邱明艳,张天永,等.材料导报:综述篇,2012,26(5),48.
72 Low J X, Yu J G, Jaroniec M, et al. Advanced Materials,2017,29(20),1.
73 Yang G, Yan W, Zhang Q, et al. Nanoscale,2013,5(24),12432.
74 Zhu Y X, Wan T, Wen X M, et al. Applied Catalysis B: Environmental,2019,244,814.
75 Mohamed M A, Zain M F M, Minggu L J, et al. Applied Surface Science,2019,476,205.
76 Du H, Liu Y N, Shen C C, et al. Chinese Journal of Catalysis,2017,38,1295.
77 Tang Y X, Zhang D F, Pu X P, et al. Journal of the Taiwan Institute of Chemical Engineers,2019,96,487.
78 Han Y L, Liang Z B, Dang H F, et al. Journal of the Taiwan Institute of Chemical Engineers,2018,87,196.
79 Bard A J. Photochem,1979,10,59.
80 Xu Q, Zhang L Y, Yu J G, et al. Materials Today,2018,21,1042.
81 Yu J G, Wang S H, Low J X, et al. Physical Chemistry Chemical Phy-sics,2013,15(39),16883.
82 Liu Y J, Liu H X, Zhou H M, et al. Applied Surface Science,2019,466,133.
83 Wang S, Zhu B C, Liu M J, et al. Applied Catalysis B: Environmental,2019,243,19.
84 Guo H L, Du H, Jiang Y F, et al. The Journal of Physical Chemistry C,2017,121(1),107.
85 Gao H, Zhang P, Hu J H, et al. Applied Surface Science,2016,391,211.
86 Hsu W P, Mishra M, Liu W S, et al. Applied Catalysis B Environmental,2017,201,511.
87 温福宇,杨金辉,宗旭,等.化学进展,2009,21(11),2285.
88 常晓侠,巩金龙.物理化学学报,2016,32(1),2.
[1] 李惠惠,张圆正,代云容,于艳新,殷立峰. 单原子光催化剂的合成、表征及在环境与能源领域的应用[J]. 材料导报, 2020, 34(3): 3056-3068.
[2] 周理想, 黄仕华, 吴锋民. 异质结太阳能电池的仿真模拟研究和界面态密度对效率的影响[J]. 材料导报, 2019, 33(Z2): 28-31.
[3] 冉涛, 张骞, 黎邦鑫, 刘旸, 李筠连. g-C3N4/泡沫镍整体式光催化剂的构建及光氧化去除NO[J]. 材料导报, 2019, 33(z1): 337-342.
[4] 熊德华, 邓砚文, 杜子娟, 张晴晴, 李宏. CuMnO2/TiO2复合光催化剂增效催化降解亚甲基蓝[J]. 材料导报, 2019, 33(8): 1262-1267.
[5] 蒋青松, 陈俊文, 杨子莹, 李文波, 程文杰, 胡光. 利用电沉积-溶剂热-硒化技术提高基于二硒化镍对电极的染料敏化太阳能电池的填充因子[J]. 材料导报, 2019, 33(24): 4040-4045.
[6] 季鑫, 张朝民. CIGS叠层太阳能电池的中间层及稳定性的研究进展[J]. 材料导报, 2019, 33(23): 3915-3920.
[7] 孙诚, 顾佳俊, 章潇慧, 祝弘滨, 刘佰博, 张丽娇, 刘庆雷, 张旺, 张荻. 基于生物精细构型的光催化材料和光热转换材料的研究进展[J]. 材料导报, 2019, 33(21): 3662-3668.
[8] 杨秀钰, 陈诺夫, 张航, 陶泉丽, 徐甲然, 陈梦, 陈吉堃. 对非晶硅薄膜进行快速磷扩散以获得本征薄层异质结[J]. 材料导报, 2019, 33(20): 3353-3357.
[9] 林珊, 史永堂, 王盈盈, 逄贝莉. 利用石墨烯基空穴传输层提升有机太阳能电池性能[J]. 材料导报, 2019, 33(12): 1945-1948.
[10] 张宇, 王敏, 周鑫, 杨光俊, 柴天煜, 朱彤. Bi2MoO6/BiVO4异质结光催化剂的制备及性能[J]. 材料导报, 2019, 33(10): 1597-1601.
[11] 曾祥花, 李战峰, 任静琨, 刘伟鹏, 陈今波, 王向坤, 郝玉英. 基于噻吩-苯非对称单元的DPP类聚合物给体材料的合成及光伏性能[J]. 《材料导报》期刊社, 2018, 32(9): 1423-1426.
[12] 谢佳乐, 杨萍萍, 李长明. 稳定高效α-Fe2O3光电化学水分解——合理的材料设计和载流子动力学[J]. 《材料导报》期刊社, 2018, 32(7): 1037-1056.
[13] 李旭力, 王晓静, 赵君, 李玉佩, 李发堂, 陈学敏. 催化分解水制氢体系助催化剂研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1057-1064.
[14] 何苗, 陈建林, 周厅, 彭卓寅, 任延杰, 陈荐. 陷光结构应用于太阳能电池的研究进展[J]. 《材料导报》期刊社, 2018, 32(5): 696-707.
[15] 吴亚丹, 胡圳, 赵丽, 王世敏, 董兵海, 王二静, 郭海永. 上转换发光材料La(OH)3∶Er3+/Yb3+的制备及在染料敏化太阳能电池中的应用[J]. 《材料导报》期刊社, 2018, 32(5): 708-714.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] WU Tao, MAO Lili, WANG Haizeng. Preparation and Defluoridation Performance of Mg/Fe-LDHO/PES Membranous Adsorbent[J]. Materials Reports, 2017, 31(14): 26 -30 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed