Please wait a minute...
材料导报  2019, Vol. 33 Issue (Z2): 1-9    
  无机非金属及其复合材料 |
碳量子点作为生物相容性发光材料在再生医学方面的应用
杨磊1, 杨志2, 连锋1
1 上海交通大学医学院附属仁济医院心外科,上海 200127;
2 上海交通大学电子信息与电气工程学院薄膜与微细技术教育部重点实验室,上海 200240
Application of Carbon Quantum Dots as Biocompatible Luminous Materials in Regenerative Medicine
YANG Lei1, YANG Zhi2, LIAN Feng1
1 Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127;
2 Ministry of Education Key Laboratory of Thin Film and Microfabrication Technology, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240
下载:  全 文 ( PDF ) ( 2467KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 碳纳米材料(CNMs)因在电子、光学、热和机械特性、多用途功能化化学上的作用而受到科学界的关注。由于碳纳米材料的固有疏水性,它们比金属基纳米材料更具有生物相容性和安全性。碳纳米材料(CNMs)可以通过疏水相互作用或π-π堆积来搭载相应的药物,用作高效的药物传递平台。近年来石墨烯、富勒烯、碳纳米管,碳量子点成为治疗癌症以及细胞内标记最广泛使用的碳纳米材料,并且可以通过共价或非共价修饰使这些碳纳米材料具有生物相容性。共价修饰是在其表面引入羟基、羧基或氨基,这些自由基与保护生物聚合物聚乙二醇(PEG)进一步结合,而非共价修饰是在CNMs上负载亲氨性分子。这些碳基纳米材料经过大量的研究证明不仅是各种生物大分子的良好负载载体,而且是很好的光敏剂。此外,许多理想的功能化基团可以被整合到CNMs上,用于肿瘤的主动靶向和归巢。由于CNMs固有的光学特性,许多研究者也对其在肿瘤细胞和干细胞成像的应用上进行了研究,并证明它们是未来生物成像中可靠的材料。
在众多的碳基纳米材料中,碳量子点由于特殊的零维结构以及优异的性能不仅在材料领域引起人们的重视,在生物应用方面也备受关注。过去十年来,将基因、生长因子等生物大分子输送到干细胞方法的发展引发了人们对通过纳米药物疗法改善人类疾病治疗的可能性的探索。然而,尽管取得了很大的进展,但在这种基于纳米药物疗法能够在临床环境中安全有效地应用之前,还需要解决很多关键性的技术问题。如干细胞在移植到缺血区域后,由于其微环境的改变,导致干细胞的存活、迁移等状态发生改变。
本文综述了这些纳米药物治疗的进展,重点介绍了先进的碳量子点纳米粒子技术,以监控治疗性移植后干细胞在体内和体外的位置,对活细胞体内大分子的示踪以及操控发挥其功能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨磊
杨志
连锋
关键词:  碳量子点  干细胞  纳米粒子  示踪    
Abstract: Carbon nanomaterials (CNMs) have attracted the attention of the scientific community because of their role in electronic, optical, thermal and mechanical properties and multi-purpose functional chemistry. Because of their inherent hydrophobicity, carbon nanomaterials have more biocompatibility and safety than metal-based nanomaterials. Carbon nanomaterials (CNMs) can be used as an efficient drug delivery platform by hydrophobic interaction or π-π stacking. In recent years, graphene, fullerene, carbon nanotubes and carbon quantum dots have become the most widely used carbon nanomaterials for the treatment of cancer and intracellular labeling. These carbon nanomaterials can be biocompatible by covalent or non-covalent modification. Covalent modification is the introduction of hydroxyl, carboxy or amino groups on its surface. These free radicals further bind to the protective biopolymer polyethylene glycol (PEG), while the non-covalent modification is supported on CNMs. These carbon-based nanomaterials have been proved to be not only good loading carriers for various biological macromolecules, but also good photosensitizers. In addition, many ideal functionalization can be integrated into CNMs for active targeting and homing of tumors. Because of the inhe-rent optical properties of CNMs, many researchers have also studied its application in tumor cell and stem cell imaging, and proved that they are reliable materials in future biological imaging.
Among many carbon-based nanomaterials, carbon quantum dots (CQDs) have not only attracted people’s attention in the field of materials but also attracted great interest in biological applications because of their special zero-dimensional structure and excellent properties. In the past decade, the development of biological macromolecules such as genes, growth factors and other biological macromolecules to stem cells has led to the exploration of the possibility of improving the treatment of human diseases through nano-drug therapy. However, although great progress has been made, many key technical problems need to be solved before this nanodrug therapy can be used safely and effectively in the clinical environment. For example, after transplantation of stem cells to ischemic area, due to the change of microenvironment, the survival and migration of stem cells are monitored.
In this paper, the progress of these nanodrug therapy is reviewed, with emphasis on the advanced carbon quantum dot nanoparticles technology to monitor the position of stem cells in vivo and in vitro after therapeutic transplantation, as well as the tracer and manipulation of macromolecules in living cells.
Key words:  carbon quantum dots    stem cell    nano-particle    tracking
               出版日期:  2019-11-25      发布日期:  2019-11-25
ZTFLH:  R318.08  
  R329.2  
通讯作者:  dr.lianfeng@hotmail.com   
作者简介:  杨磊,上海交通大学医学院附属仁济医院心血管外科硕士研究生,现攻读硕士二年级,主要研究方向为纳米材料调控干细胞,及其介导的心肌再生,缺血再灌注后的心肌修复。
连锋博士,主任医师,心血管外科行政副主任,上海交通大学硕士研究生导师,中华医学会心胸血管外科分会会员,中国医师协会会员,仁济医院青联委员。1994年获得医学学士学位,开始心胸外科工作。师从我国著名心脏外科专家朱洪生教授,2000年获得上海交通大学医学院硕士学位,2003年获得上海交通大学医学院博士学位。同年荣获上海市“宝钢教育奖”,赴中国香港大学玛丽医院学习。2006年入选上海交通大学医学院“百人计划”,赴美国排名第一的心脏中心——克利夫兰医学中心(CLEVELAND CLINIC)访问学者学习。2007年3月至2008年3月在意大利国立帕维亚大学(Università degli Studi di PAVIA)附属圣马窦医院(IRCCS POLICLINICO SAN MATTEO)心脏外科临床访问学者从事临床工作,主修冠脉搭桥,瓣膜外科,先天性心脏病和微创心脏外科,在意大利期间参加各种心脏手术(包括各种微创微创心脏手术,da Vinci机器人手术,心脏移植,肺移植等)近500台,主刀冠脉搭桥等各种心脏手术近100台,回国获得中国教育部颁发的归国人员留学证书。
引用本文:    
杨磊, 杨志, 连锋. 碳量子点作为生物相容性发光材料在再生医学方面的应用[J]. 材料导报, 2019, 33(Z2): 1-9.
YANG Lei, YANG Zhi, LIAN Feng. Application of Carbon Quantum Dots as Biocompatible Luminous Materials in Regenerative Medicine. Materials Reports, 2019, 33(Z2): 1-9.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2019/V33/IZ2/1
1 Bongso A, Lee E H. In: Stem Cell, World Scientific Publishing Co: Singapore,2005.
2 Biffi A, De Palma M, Quattrini A, et al. Journal of Clinical Investigation,2004,113,1118.
3 Biffi A, Capotondo A, Fasano S, et al. Journal of Clinical Investigation,2006,116,3070.
4 Ryan J M, Barry F P, Murphy J M, et al. Journal of Inflammation-Mation,2005,2,1.
5 Ryan J M, Barry F, Murphy J M. Clinical and Experimental Immunology,2007,149,353.
6 Fischer U M, Harting M T, Jimenez F, et al. Stem Cells and Development,2009,18,683.
7 Roobrouk V D, Ulloa-Montoya F, Verfaillie C M, et al. Experimental Cell Research,2008,314,1937.
8 Jing X, Yang L, Duan X, et al. Joint Bone Spine,2008,75,432
9 Lee N, Choi S H, Hyeon T, et al. Advanced Materials,2013,25,2641
10 Subramani K, Hosseinkhani H, Khraisat A, et al. Current Nanoscience,2009,5,135.
11 Aoyama T, Hosseinkhani H, Yamamoto S, et al. Journal of Controlled Release, 2002, 80, 345.
12 Hosseinkhani H, Hosseinkhani M. Current Drug Safety,2009,4,79.
13 Meng H, Xing G, Sun B, et al. ACS Nano,2010,4,2773.
14 Jiao F, Liu Y, Qu Y, et al. Carbon,2010,48,2231.
15 Sun C, Wang L, Gao D, et al. Nanoscale, 2016,8,16332.
16 Pan Y, Wang L, Kang S G, et al. ACS Nano,2015,9,6826.
17 Zhou Y, Deng R, Zhen M, et al. Biomaterials,2017,133,107.
18 Vollath D D, Szabo V, Haubelt, et al. Journal of the European Ceramic Society,1997,17,1317.
19 Jones M C, Leroux J C, European Journal of Pharmaceutics And Biopharmaceutics,1999,48,101.
20 Granot D, Nkansah M K, Bennewitz M F, et al. Magnetic Resonance in Medicine,2014,71,1238.
21 Imrie C T, Henderson P A. Chemical Society Reviews,2007,36,2096.
22 Shao D, Lu M, Xu D, Zheng X, et al. Biomaterials Science,2017,22(5),1820.
23 Chen D, Li Q, Meng Z, et al. Theranostics,2017,7(7),1820.
24 Meng Z, Guo L, Li Q.Chemistry,2017,23(28),6836.
25 Kim T, Lee N, Arifin D R, et al. Advanced Functional Materials,2017,27(3),19.
26 Zheng X T, Than A, Ananthanaraya A, et al. ACS Nano,2013,7(7),6278.
27 Han Q, Dong W, Wang H, et al. Chemosphere,2019,27,235.
28 Wang Z, Xia J, Zhou C, et al. Colloids and Surfaces B-Biointerfaces,2013,112,192.
29 Liu W, Howarth M, Greytak A B, et al. Journal of the American Chemical Society,2008,130(4),1274.
30 Zhang M, Bai L, Shang W, et al. Materials Today Chemistry,2012,22,7461.
31 Shang W, Zhang X, Zhang M, et al. Nanoscale,2014,6,5799.
32 Markovic Z M, Ristic B Z, Arsikin K M, et al. Biomaterials,2012,33,7084.
33 Hild W A, Breunig M ,Goepferich A, et al. European Journal of Pharmaceutics and Biopharmaceutics,2008,68,153.
34 Zhang X, Hu W, Li J, et al. Toxicology Research,2012,1,62.
35 Wang K, Ruan J, Song H, et al. Nanoscale Research Letters,2011,6(1),8.
36 Popovtzer R, Agrawal A, Kotov N A, et al. Nano Letters,2008,8,4593.
37 Xu C J, Tung G A, Sun S H, et al. Chemistry of Materials,2008,20,4167.
38 Connor E E, Mwamuka J, Gole A, et al. Small,2005,1,325.
39 Luo P G, Sahu S, Yang S T. et al. Journal of Materials Chemistry,2013,1,2116.
40 Luo P G, Sonkar S K, Yang S T. et al. RSC Advances,2014,4,10791.
41 Wang Y, Hu, A. Journal of Materials Chemistry,2014,2,6921.
42 Lim S Y, Shen W, Gao Z. Chemical Society Reviews,2015,44,362.
43 Miao P, Han K, Tang Y, et al. Nanoscale,2015,7,1586.
44 Zhao A, Chen Z, Zhao C. et al. Carbon,2015,85,309.
45 Cao L, Wang X, Meziani M. et al. Journal of the American Chemical So-ciety,2007,129(37),11318.
46 Zhang X, Wang S, Xu L. et al. Nanoscale,2012,4,5581.
47 Chen B, Li F, Li S. et al. Nanoscale,2013,5,1967.
48 Yang L, Jiang W, Qiu L. et al. Nanoscale,2015,7,6104.
49 Liu J H, Cao L, LeCroy G E, et al. ACS Applied Materials & Interfaces.2015,7(34),310.
50 Hu S, Zhou Y, Zhao Y, et al . Tissue Engineering and Regenerative Me-dicine,2018,12(4),2085.
51 Yang Y, Zhang J, Qian Y, et al. Ann Biomed Engannals of Biomedical Engineering,2013,41(10),2109.
52 Huang Z, Li C, Yang S, Xu J, et al. International Journal of Nanomedicine,2015,2(10),1679.
53 Furman-Haran E, Margalit R, Grobgeld D, et al.Magn Reson Med,1998,8(3),634.
54 Donnelly E M, Kubelick K P, Dumani D S, et al. Nano Letters,2018,18(10),6625.
55 Betzer O, Shwartz A, Motiei M, et al. ACS Nano,2014,8(9),9274.
56 Zhang Y S, Wang Y, Wang L, et al. Theranostics,2013,3(8),532.
57 Drey F, Choi Y H, Neef K, et al. Cell Transplantation,2013,22(11),1971.
58 Zheng X T, Than A, Ananthanaraya A, et al. ACS Nano.2013,7(7),6278.
59 Wang X, Sun X, Lao J, et al. Colloids and Surfaces B-Biointerfaces,2014,122,638.
60 Kim J, Song S H, Jin Y, et al. Nanoscale.2016,8(16),8512.
61 Liu J H, Cao L, LeCroy G E, et al. ACS Applied Materials & Interfaces,2015,7(34),310.
62 Han G, Zhao J, Zhang R, et al. Angewandte Chemie-International Edition,2019,58(21),20.
63 Dong H, Dai W, Ju H, et al. ACS Applied Materials & Interfaces,2015,7(1),20.
64 Chen S, Weitemier A Z, Zeng X, et al. Science,2018,359(6376),679.
65 Junyan Y, Shulan H, Yanzhen Y, et al. Colloids and Surfaces B-Biointerfaces,2018,171,241.
66 Yang S T, Wang X, Wang H, et al. Biophysical Chemistry,2009,18,110.
[1] 孙莉, 陈延明. SDS表面修饰纳米ZnO制备及抗菌性能研究[J]. 材料导报, 2019, 33(Z2): 89-91.
[2] 罗继永, 张道海, 田琴, 魏柯, 周密, 杨胜都. 无机纳米粒子协同无卤阻燃聚丙烯的研究进展[J]. 材料导报, 2019, 33(z1): 499-504.
[3] 杨焜, 王春来, 丁晟, 刘长军, 田丰, 李钒. 荧光碳量子点:合成、特性及在肿瘤治疗中的应用[J]. 材料导报, 2019, 33(9): 1475-1482.
[4] 韩贵华, 张宝林, 苏礼超, 黄银平, 范子梁, 赵应征. 二肉豆蔻酰磷脂酰胆碱修饰的氧化铁纳米粒子在PC-12细胞内的分布[J]. 材料导报, 2019, 33(6): 1047-1051.
[5] 朱继红, 曾碧榕, 罗伟昂, 袁丛辉, 陈凌南, 毛杰, 戴李宗. Fe3O4@P(St-co-OBEG)核壳结构微球负载银/铂纳米粒子复合催化剂的构筑及催化性能[J]. 材料导报, 2019, 33(4): 571-576.
[6] 陈道鸽, 熊向源, 龚妍春, 李资玲, 李玉萍. 含Pluronic高分子纳米粒子在药物释放体系的研究现状[J]. 材料导报, 2019, 33(3): 517-521.
[7] 赵秋丽, 卞洁鹏, 杨庆浩, 彭龙贵, 王志华, 后振中, 李颖. 聚集诱导发红光材料在生物成像领域的应用[J]. 材料导报, 2019, 33(3): 522-535.
[8] 胡银春, 程一竹, 王仁虎, 殷萌, 魏延, 杜晶晶, 黄棣, 陈维毅. 静电纺Ag@MOF-5/β-CD抗菌纤维膜的制备及性能[J]. 材料导报, 2019, 33(22): 3825-3828.
[9] 魏波,周金堂,姚正军,钱逸,钱崑. 环氧树脂基体的原位增韧技术研究进展[J]. 材料导报, 2019, 33(17): 2976-2988.
[10] 王爱国,郑毅,张祖华,刘开伟,马瑞,孙道胜. 地聚物胶凝材料改性提高混凝土耐久性的研究进展[J]. 材料导报, 2019, 33(15): 2552-2560.
[11] 肖治国, 成岳, 唐伟博, 余宏伟. 核壳磁性纳米粒子在环境治理中的应用进展[J]. 材料导报, 2019, 33(13): 2174-2183.
[12] 冯爱玲, 徐榕, 王彦妮, 张亚妮, 林社宝. 核壳型稀土上转换纳米材料及其生物医学应用[J]. 材料导报, 2019, 33(13): 2252-2259.
[13] 韦晶, 韩希思, 张承武, 吴琼, 秦晓飞, 李林, 余昌敏, 黄维. 微小RNA纳米递送体系的构建及其研究进展[J]. 材料导报, 2019, 33(1): 16-26.
[14] 吴英柯,马建中,鲍艳. 聚合物基纳米复合材料的界面作用研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 434-442.
[15] 谭丰, 徐洋洋, 李卫, 徐明丽, 闵春刚, 史庆南, 刘锋, 杨喜昆. 在硫基功能化碳纳米管上组装壳层厚度可控的Au@Pt核壳纳米粒子以获得高的甲醇电催化氧化活性[J]. 材料导报, 2018, 32(23): 4041-4046.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] WU Tao, MAO Lili, WANG Haizeng. Preparation and Defluoridation Performance of Mg/Fe-LDHO/PES Membranous Adsorbent[J]. Materials Reports, 2017, 31(14): 26 -30 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed