Please wait a minute...
材料导报  2019, Vol. 33 Issue (8): 1348-1353    https://doi.org/10.11896/cldb.18040075
  无机非金属及其复合材料 |
基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立
薛翠真1,2, 申爱琴2, 郭寅川2
1 兰州理工大学土木工程学院,兰州 730050
2 长安大学公路学院,西安 710064
Prediction Model for the Compressive Strength of Concrete Mixed with CWCPM Based on Pore Structure Parameters
XUE Cuizhen1,2, SHEN Aiqin2, GUO Yinchuan2
1 School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050
2 School of Highway, Chang'an University, Xi'an 710064
下载:  全 文 ( PDF ) ( 2015KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 为提高废旧粘土砖活性,将废砖破碎、粉磨后进行活性激发,制得建筑垃圾复合粉体材料(Construction waste composite powder materials,CWCPM)。为进一步研究CWCPM作为混凝土掺合料的可行性,首先研究不同因素对掺CWCPM混凝土抗压强度及孔结构参数的影响规律。然后,分析孔隙参数、孔径分布参数与抗压强度之间的关系。最后,基于多元回归理论,建立同时考虑孔隙参数与孔径分布参数的掺CWCPM的混凝土的抗压强度-孔结构关系模型。结果表明,CWCPM的掺入降低了混凝土7 d抗压强度。当CWCPM掺量不高于30%时,试件28 d强度高于基准试件,CWCPM可作为混凝土掺合料进行再生利用。总孔隙面积越大,总孔隙量、平均孔径和孔隙率越小,混凝土抗压强度越高。抗压强度与毛细孔及大孔数量均为负相关关系,而与凝胶孔及过渡孔含量之间未表现出显著的定量关系。考虑孔隙参数与孔径分布的抗压强度-孔结构模型可准确地预测掺CWCPM的混凝土的抗压强度。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
薛翠真
申爱琴
郭寅川
关键词:  建筑垃圾复合粉体材料  力学性能  孔结构  多元回归  预测模型    
Abstract: In order to improve the activity of waste brick, compounded it with fly ash, mineral powder and alkali-activator to form the construction waste composite powder materials (CWCPM). For further study the feasibility of CWCPM as concrete admixture, studied the pore structure of differe-nt concretes mixed with CWCPM by the method of mercury injection, analyzed the relationship between compressive strength of the concrete and pore parameters, pore size distribution, set up compressive strength-pore structure prediction model through multiple regression by considering the pore parameters and pore size distribution. Results show that CWCPM reduces 7 d compressive strength of the specimen; when its dosage is less than 30%, the 28 d compressive strength is higher than that of the control specimen; the greater total pore area and the smaller total pore volume, average pore diameter and porosity indicate higher strength value; the compressive strength shows a negative correlation with the number of capillary pore and large pore, and has no obvious relation with the number of gel pore and transition pore; the compressive strength-pore structure model which considers the pore parameters and pore size distribution can accurately predict the compressive strength of concrete mixing with CWCPM.
Key words:  construction waste composite powder materials    mechanical property    pore structure    multiple regression    prediction model
               出版日期:  2019-04-25      发布日期:  2019-04-28
ZTFLH:  TU528.2  
基金资助: 交通运输部西部项目(2013318J16490);中央高校基本科研业务费专项资金(310821165012)
作者简介:  薛翠真,兰州理工大学,讲师。2017年12月毕业于长安大学,获得工学博士学位。主要研究方向为水泥基及水泥混凝土材料耐久性能与建筑垃圾的再生利用。在国内外重要期刊发表文章10余篇,email: xuecuizhen2008@163.com。申爱琴,长安大学,教授,博士研究生导师。主要研究方向:道路工程材料结构与性能,道路桥梁水泥混凝土高性能提升技术,新型环保路面材料改性与开发,工业废料及建筑垃圾在路基路面工程中的应用技术。在国内外重要期刊发表文章120余篇,获国家授权专利30余项。
引用本文:    
薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
XUE Cuizhen, SHEN Aiqin, GUO Yinchuan. Prediction Model for the Compressive Strength of Concrete Mixed with CWCPM Based on Pore Structure Parameters. Materials Reports, 2019, 33(8): 1348-1353.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18040075  或          http://www.mater-rep.com/CN/Y2019/V33/I8/1348
1 Zhang Y. Mechanical property of recycled coarse aggregate concrete and precasted wall slab members made with construction waste of clay brick. Ph.D. Thesis, Zhengzhou University, China, 2014(in Chinese).
张䶮.建筑垃圾废砖再生粗骨料混凝土及预制墙板受力性能研究.博士学位论文,郑州大学,2014.
2 Yi C. The study on the resource recovery of construction waste for recycled aggregate concrete. ’s Thesis, Jinan University, China, 2014(in Chinese).
易超.建筑垃圾资源化制备再生骨料混凝土的研究.硕士学位论文,暨南大学,2014.
3 Levy S M, Helene P. Cement & Concrete Research, 2004, 34(11),1975.
4 Kou S C, Chi S P, Etxeberria M. Cement & Concrete Composites, 2014, 53(10),73.
5 Xue C Z,Shen A Q,Guo Y C, et al. Materials Review B:Research Papers,2016,30(5),130(in Chinese).
薛翠真,申爱琴,郭寅川,等.材料导报:研究篇,2016,30(5),130.
6 Chen M Z, Lin J T, Wu S P, et al. Construction & Building Materials, 2011, 25(4),1532.
7 Xiao S Y, Zhu L. Journal of Shenyang Jianzhu University (Natural Science),2016(4),608(in Chinese).
肖诗云,朱梁.沈阳建筑大学学报(自然科学版),2016(4),608.
8 Xie C, Wang Q C, Li S, et al. Bulletin of the Chinese Ceramic Society,2015,34(12),3695(in Chinese).
谢超,王起才,李盛,等.硅酸盐通报,2015,34(12),3695.
9 Bu J, Tian Z. Sādhanā, 2016, 41(3),1.
10 Wei J X, Yu Q J, Zeng X X, et al. Journal of South China University of Technology (Natural Science Edition),2007,35(2),121(in Chinese).
韦江雄,余其俊,曾小星,等.华南理工大学学报(自然科学版),2007,35(2),121.
11 Ma G J,Guo X Y,Huang W X, et al. Bulletin of the Chinese Ceramic Society, 2016(7),2259(in Chinese).
马国金,郭秀艳,黄文先,等.硅酸盐通报,2016(7),2259.
12 Das B B, Kondraivendhan B. Construction & Building Materials, 2012, 28(1),382.
13 Khatib J M, Mangat P S. Cement & Concrete Composites, 1999, 21(5-6),431.
14 Xue C Z,Shen A Q,Guo Y C, et al. Journal of Jiangsu University (Nature Science Edition),2017, 38(3),343(in Chinese).
薛翠真, 申爱琴, 郭寅川,等.江苏大学学报(自然科学版), 2017, 38(3),343.
15 Bensted J. Structure and properties of cement, Chemical Industry Press, China, 2008(in Chinese).
本斯迪德.水泥的结构和性能,化学工业出版社, 2008.
16 Mehta P K. In :Proceedings of 8th International Congress on the Chemistry of Cement. Rio de Janeiro, 1986,pp.113.
[1] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[2] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[3] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[4] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[5] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[6] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[7] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[8] 廖宜顺, 沈晴, 徐鹏飞, 廖国胜, 钟侚. 粉煤灰对水泥基材料水化过程电阻率的影响研究[J]. 材料导报, 2019, 33(8): 1335-1339.
[9] 王家滨, 牛荻涛. 硝酸侵蚀/冻融循环共同作用喷射混凝土耐久性能(I):物理力学性能及孔结构变化[J]. 材料导报, 2019, 33(8): 1340-1347.
[10] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[11] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[12] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[13] 赵立臣, 谢宇, 张喆, 王铁宝, 王新, 崔春翔. ZnO纳米棒/多孔锌泡沫的制备及其压缩和抗菌性能[J]. 材料导报, 2019, 33(4): 577-581.
[14] 何秀兰, 杜闫, 巩庆东, 郑威, 柳军旺. 凝胶-发泡法制备多孔Al2O3陶瓷及其力学性能[J]. 材料导报, 2019, 33(4): 607-610.
[15] 董天顺, 郑晓东, 李国禄, 王海斗, 周秀锴, 李亚龙. 大气等离子喷涂Fe基涂层及其氩弧重熔层的组织与力学性能[J]. 材料导报, 2019, 33(4): 678-683.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[10] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed