Please wait a minute...
材料导报  2019, Vol. 33 Issue (8): 1312-1316    https://doi.org/10.11896/cldb.18050253
  无机非金属及其复合材料 |
基于中心粒子模型的超高性能水泥基材料水化进程模拟
陈庆1, 王慧1, 蒋正武1, 朱合华2, 马瑞1
1 同济大学材料科学与工程学院,先进土木工程材料教育部重点实验室,上海 201804
2 同济大学土木工程学院,土木工程防灾国家重点实验室,上海 200092
The Hydration Model of Ultra-high Performance Cementitious Materials Based on the Shrinking-core Model
CHEN Qing1, WANG Hui1, JIANG Zhengwu1, ZHU Hehua2, MA Rui1
1 Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, School of Materials Science and Engineering, Tongji University, Shanghai 201804
2 State Key Laboratory of Disaster Reduction in Civil Engineering, College of Civil Engineering, Tongji University, Shanghai 200092
下载:  全 文 ( PDF ) ( 2900KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 水泥基材料的水化进程关系着其微结构形成和性能演化。超高性能水泥基材料的组分和制备工艺特殊,其水化进程描述不同于普通混凝土材料。本工作基于中心粒子水化模型,结合高效减水剂、水胶比、硅灰掺量、温度等对水泥基材料水化进程的作用机制,提出不同因素的模型修正系数,建立超高性能水泥基材料的水化动力学模型;应用建立的模型对比分析了修正与未修正的水化进程,并与已有实验数据进行对比验证。结果表明,该模型可较好地模拟超高性能水泥基材料的水化进程。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈庆
王慧
蒋正武
朱合华
马瑞
关键词:  中心粒子模型  超高性能  水泥基材料  水化进程    
Abstract: The hydration process of cementitious materials play an important role in determining the material’s microstructure formation and properties. Compared to the normal concrete, the hydration process of ultra-high performance cementitious materials is different due to the special components and production process. Taking superplasticizers, water to binder ratios, silica fume and temperatures into consideration, the compensation factors were proposed and an improved kinetics hydration model was established based on the shrinking-core model. The modified and unmodified model was employed to study differences of the hydration process. The model predicting results were compared with the experimental results. Results show that the proposed model is capable of simulating the hydration process of ultra-high performance cementitious materials well.
Key words:  shrinking-core model    ultra-high performance    cementitious materials    hydration process
               出版日期:  2019-04-25      发布日期:  2019-04-28
ZTFLH:  TU528.31  
基金资助: 国家自然科学基金(51508404;51478348;51278360;51308407;U1534207)
作者简介:  陈庆,同济大学,副教授。2014年6月毕业于同济大学隧道及地下建筑工程专业。主要从事智能和高性能混凝土及其多尺度分析,在国内外重要期刊发表文章30余篇,申报发明专利10余项。蒋正武,同济大学,教授。2002年6月毕业于同济大学材料学专业。主要从事可持续水泥基材料、高性能混凝土与特种混凝土、混凝土自修复材料与方法、极端条件下混凝土材料设计理论与技术等,在国内外重要期刊发表文章200余篇,获得国家发明专利60余项。Email: jzhw@tongji.edu.cn
引用本文:    
陈庆, 王慧, 蒋正武, 朱合华, 马瑞. 基于中心粒子模型的超高性能水泥基材料水化进程模拟[J]. 材料导报, 2019, 33(8): 1312-1316.
CHEN Qing, WANG Hui, JIANG Zhengwu, ZHU Hehua, MA Rui. The Hydration Model of Ultra-high Performance Cementitious Materials Based on the Shrinking-core Model. Materials Reports, 2019, 33(8): 1312-1316.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18050253  或          http://www.mater-rep.com/CN/Y2019/V33/I8/1312
1 Li W T, Dong B Q, Yang Z X, et al. Advanced Materials, 2018, 30(17),1705679.
2 Chen Q, Zhu H H, Ju J W, et al. Acta Mechanica, 2015, 226(6), 1861.
3 Chen Q, Zhu H H, Ju J W, et al. International Journal of Damage Mechanics, 2018, 27(8), 1252.
4 Li W T, Jiang Z W, Yang Z H. Cement and Concrete Composite, 2017, 84, 48.
5 Wu X Q. Journal of the Chinese Ceramic Society, 1988, 16(5), 423(in Chinese).
吴学权.硅酸盐学报, 1988, 16(5), 423.
6 Yan P Y, Zheng F. Journal of the Chinese Ceramic Society, 2006, 34(5), 555(in Chinese).
阎培渝, 郑峰.硅酸盐学报, 2006, 34(5), 555.
7 Kolani B, Buffo-Lacarrere L, Sellier A, et al. Cement and Concrete Composites, 2012, 34(9), 1009.
8 Tomosawa F. In:Proceedings of the 10th International Congress on the Chemistry of Cement. Gothenburg, 1997, pp. 51.
9 Maruyama I, Matsushita T, Noguchi T. International RILEM Symposium on Concrete Modeling-Conmod’ 08. Delft, 2008, pp.155.
10 Wang X Y. China Science:Technological Sciences, 2013, 56(9), 2317.
11 Wang X Y, Lee H S. Cement and Concrete Research, 2010, 40, 984.
12 Zhang W H, Zhang Y S. Bulletin of the Chinese Ceramic Society, 2015, 34(4), 951(in Chinese).
张文华, 张云升.硅酸盐通报, 2015,34(4), 951.
13 Zhang Y S, Zhang W H, Chen Z Y. Materials Review A:Review Papers, 2017, 31(12), 1(in Chinese).
张云升, 张文华, 陈振宇. 材料导报:综述篇, 2017, 31(12), 1.
14 Wu X M, Deng M, Zhao H, et al. Concrete, 2008(5), 75(in Chinese).
吴晓明, 邓敏, 赵晖, 等.混凝土, 2008(5), 75.
15 Uomoto T, Ohshita K. Concrete Research and Technology, 1994, 5(1), 119.
16 Kishi T, Maekawa K. Concrete Library of JSCE, 1996, 28, 97.
17 Oh B H, Cha S W. ACI Materials Journal, 2003, 100, 361.
18 Wang X Y. Construction and Building Materials, 2014, 64, 1.
19 Wang C, Pu X C, Chen K, et al. Journal of Material Science and Engineering, 2008, 26(6), 822(in Chinese).
王冲, 蒲心诚, 陈科,等.材料科学与工程学报, 2008, 26(6), 822.
20 Nguyen V T. Rice husk as a mineral admixture for ultra high performance concrete. Ph.D. Thesis, Delft University of Technology, Netherlands,2011.
21 Jiang Z W, Li W T, Yuan Z C. Cement and Concrete Composites, 2015, 57, 116.
22 Li C, Zhu H B, Wu M X, et al. Cement and Concrete Research, 2017, 92, 98.
23 Saeki T, Monteiro P. Cement and Concrete Research, 2005, 35, 1914.
24 Papadais V G. Cement and Concrete Research, 1999, 29, 79.
25 Tomosawa F, Noguchi T, Hyeon C. Proceedings of Tenth International Congress Chemistry of Cement. Gothenburg, 1997, pp.72.
[1] 韩方玉, 刘建忠, 刘加平, 马骉, 沙建芳, 王兴龙. 基于超高性能混凝土的钢筋锚固性能研究[J]. 材料导报, 2019, 33(z1): 244-248.
[2] 杨刘琨, 潘志华, 徐赛赛, 刘劲松. 微胶囊在修补砂浆中延迟释放早强剂的应用及性能分析[J]. 材料导报, 2019, 33(2): 246-250.
[3] 高小建, 李双欣. 微波养护对掺矿渣超高性能混凝土力学性能的影响及机理[J]. 材料导报, 2019, 33(2): 271-276.
[4] 王耀城,杨文根,李周义,刘伟,刘冰. 利用XCT技术检测水泥基材料微观结构的研究进展[J]. 材料导报, 2019, 33(17): 2902-2909.
[5] 曹润倬, 周茗如, 周群, 何勇. 超细粉煤灰对超高性能混凝土流变性、力学性能及微观结构的影响[J]. 材料导报, 2019, 33(16): 2684-2689.
[6] 周昱程, 刘娟红, 纪洪广, 付士峰, 谷峪. 温度-复合盐耦合条件下纤维混凝土井壁冲击倾向性试验研究[J]. 材料导报, 2019, 33(16): 2671-2676.
[7] 王爱国, 朱愿愿, 李燕, 刘开伟, 徐海燕, 孙道胜, 范良朝. 表面改性硅/铝质材料及其在水泥基材料中应用的研究进展[J]. 材料导报, 2019, 33(15): 2538-2545.
[8] 都蓉蓉, 张雄, 顾明东, 季涛. 聚羧酸减水剂与增强组分的复合效应及原理[J]. 材料导报, 2019, 33(14): 2461-2466.
[9] 杨凯, 张之璐, 杨永, 韩昊, 黄文聪, 朱效宏, 唐德莎, 李爽, 杨长辉. 复合激发剂对碱矿渣胶结材水化进程及早期性能的影响[J]. 材料导报, 2019, 33(14): 2326-2330.
[10] 张王田, 张云升, 吴志涛, 刘乃东, 袁涤非. 玻璃纤维增强水泥基材料组成优化设计与性能[J]. 材料导报, 2019, 33(14): 2331-2336.
[11] 张晓佳, 张高展, 孙道胜, 刘开伟. 水泥基材料硫酸盐侵蚀机理的研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1174-1180.
[12] 牛恒茂, 武文红, 赵燕茹, 邢永明. 基于PVA纤维-基体界面性能分析水泥基材料的弯曲性能[J]. 材料导报, 2018, 32(6): 995-999.
[13] 朱彬荣, 潘金龙, 周震鑫, 张洋. 3D打印技术应用于大尺度建筑的研究进展[J]. 材料导报, 2018, 32(23): 4150-4159.
[14] 曹园章, 郭丽萍, 臧文洁, 张健, 薛晓丽. 氯盐和硫酸盐交互作用下水泥基材料的破坏机理综述[J]. 材料导报, 2018, 32(23): 4142-4149.
[15] 毛倩瑾, 伍文文, 梁鹏, 王子明, 崔素萍. 海藻酸钙/环氧微胶囊在水泥基材料中的自修复作用[J]. 材料导报, 2018, 32(22): 4016-4021.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed