Please wait a minute...
材料导报  2019, Vol. 33 Issue (22): 3732-3737    https://doi.org/10.11896/cldb.18100082
  无机非金属及其复合材料 |
全珊瑚海水混凝土配合比设计及评价方法
巩位,余红发,麻海燕,达波
南京航空航天大学土木工程系,南京 210016
Mix Proportion Design and Evaluation Approach of Coral Aggregate Seawater Concrete
GONG Wei, YU Hongfa, MA Haiyan, DA Bo
Department of Civil Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016
下载:  全 文 ( PDF ) ( 1670KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对南海岛礁大规模海防工程建设过程中资源短缺的问题,设计地域适用性较强的全珊瑚海水混凝土。通过正交试验方法和基于信噪比的田口方法,研究总胶凝材料用量、预吸水率、砂率和净水胶比对全珊瑚海水混凝土抗压强度的影响;验证田口方法的优越性,确定各因素对全珊瑚海水混凝土抗压强度的影响程度,并加以量化;提出多因素共同作用下全珊瑚海水混凝土抗压强度的多元非线性回归模型。结果表明:基于信噪比的田口方法优于传统正交试验方法。最优全珊瑚海水混凝土设计组合为:总胶凝材料用量550 kg·m-3,预吸水率5%,砂率50%,净水胶比0.25;各因素影响程度从大到小依次为:预吸水率、净水胶比、砂率和总胶凝材料用量。预吸水率的贡献率最大,为67.6%;净水胶比次之,为17.8%;砂率的贡献率较小,仅为0.7%。回归模型的建立对指导制备高强全珊瑚海水混凝土具有十分重要的意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
巩位
余红发
麻海燕
达波
关键词:  全珊瑚海水混凝土  正交试验方法  田口方法  抗压强度  信噪比  极差分析  方差分析  回归模型    
Abstract: For the sake of relieving the resource shortage in the construction of large-scale coastal defense projects in reef of the South China Sea, coral aggregate seawater concrete (CASC) with better regional applicability was designed. We employed the orthogonal test and the signal-to-noise ratio (SNR) based Taguchi method to explore the impact of total cementitious material content, pre water absorption rate, sand rate and net water to binder ratio on compressive strength of CASC. Then we verified the superiority of Taguchi method, confirmed and quantified the influe-nce degree of various factors on compressive strength of CASC, proposed a multivariate nonlinear regression model on compressive strength of CASC. The results show that the SNR based Taguchi method exhibited great superiority to conventional orthogonal test. The optimum design parameters of CASC turned out to be the total cementitious material content of 550 kg·m-3, pre water absorption rate of 5%, sand rate of 50%, and net water to binder ratio of 0.25. The influence degree of pre water absorption, net water to binder ratio, sand rate and total cementitious material content on CASC decreased successively. Specifically, the contribution of pre water absorption rate accounted the largest proportion (67.6%), followed by net water to binder ratio (17.8%), and sand rate (0.7%). The establishment of regression model show exceeding significance to guide the preparation of high-strength CASC.
Key words:  coral aggregate seawater concrete    orthogonal test method    Taguchi method    compressive strength    signal noise ratio    range analysis    variance analysis    regression model
               出版日期:  2019-11-25      发布日期:  2019-09-16
ZTFLH:  TU528  
基金资助: 国家自然科学基金(51678304;11832013);国家重点基础研究发展计划(973计划)(2015CB655102);江苏省自然科学基金(BK20180433)
作者简介:  巩位,2017年6月毕业于兰州理工大学,获得工程硕士学位。2017年9月至今,于南京航空航天大学攻读博士学位,主要从事混凝土耐久性的研究。
余红发,中国科学院“百人计划”入选者。担任RIELM中国分会会员,ACI中国分会理事,中国菱镁行业协会副会长,中国硅酸盐学会与中国建筑学会等学术职务。研究方向包括:盐湖镁建材、高性能混凝土、珊瑚混凝土等新型水泥混凝土材料、混凝土结构耐久性与寿命设计、混凝土材料与结构的抗冲击爆炸行为等。在ASCE Journal of Materials in Ci-vil Engineering、ACI Materials Journal、Construction and Building Material、Ocean Engineering、Materials Science and Engineering C、《硅酸盐学报》、《建筑结构学报》等国内外刊物发表学术论文300余篇,SCI/EI收录130余篇,授权中国发明专利30余项,出版学术专著2部。
引用本文:    
巩位,余红发,麻海燕,达波. 全珊瑚海水混凝土配合比设计及评价方法[J]. 材料导报, 2019, 33(22): 3732-3737.
GONG Wei, YU Hongfa, MA Haiyan, DA Bo. Mix Proportion Design and Evaluation Approach of Coral Aggregate Seawater Concrete. Materials Reports, 2019, 33(22): 3732-3737.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18100082  或          http://www.mater-rep.com/CN/Y2019/V33/I22/3732
[1] Wang Lei, Mao Yadong, Lv Haibo, et al. Construction and Building Materials, 2018, 162,442.
[2] Da Bo, Yu Hongfa, Ma Haiyan,et al.Journal of the Chinese Ceramic Society,2016,44(2),253(in Chinese).达波,余红发,麻海燕,等.硅酸盐学报,2016,44(2),253.
[3] Da Bo, Yu Hongfa, Ma Haiyan, et al. Construction and Building Mate-rials, 2016, 123,47.
[4] Wang Jie, Feng Peng, Hao Tingyu, et al. Construction and Building Materials, 2017, 147, 272.
[5] Da Bo, Yu Hongfa, Ma Haiyan, et al. Construction and Building Mate-rials, 2018, 155, 251.
[6] Tang Junwu, Cheng Hua, Zhang Qibin, et al. Construction and Building Materials, 2018, 165, 647.
[7] Dempsey G. ACI Journal Proceedings, 1951, 48(10), 157.
[8] Nutter B E. Journal of American Concrete Institute, 1943, 15(1), 61.
[9] Da Bo, Yu Hongfa, Ma Haiyan, et al. Journal of Building Structures, 2017, 38(1),144(in Chinese).达波,余红发,麻海燕,等.建筑结构学报,2017,38(1),144.
[10] Wang Lei, Zhao Yanlin. Advanced Materials Research, 2012, 446-449, 3369.
[11] Wang Lei, Mao Yadong, Chen Shuang, et al. Journal of Building Materials, 2018, 21(2),286(in Chinese).王磊,毛亚东,陈爽,等.建筑材料学报,2018,21(2),286.
[12] Wang Fang, Zha Xiaoxiong. Journal of Building Structures, 2013, 34(S1),288(in Chinese).王芳,查晓雄.建筑结构学报,2013,34(S1), 288.
[13] Yang Shutong, Yang Chao, Huang Meilin, et al. Construction and Buil-ding Materials, 2018, 173, 272.
[14] Liang Yuanbo, Lu Bo, Huang Shaojian. Ocean Technology, 1995, 14(2), 58(in Chinese).梁元博, 卢博, 黄韶健.海洋技术, 1995, 14(2), 58.
[15] Yu Yiming, Liu Song, Wu Ke, et al. New Building Materials, 2018(3), 27(in Chinese).余以明,刘松,吴柯,等.新型建筑材料, 2018(3), 27.
[16] Zhao Yanlin, Han Chao, Zhang Shuanzhu, et al. Concrete, 2011(2), 43(in Chinese).赵艳林, 韩超, 张栓柱, 等. 混凝土, 2011(2), 43.
[17] Wang Lei, Zhao Yanlin, Lv Haibo. Concrete, 2012(2), 99(in Chinese).王磊, 赵艳林, 吕海波.混凝土, 2012(2), 99.
[18] Pan Baizhou,Wei Zhuobin. Engineering Mechanics, 2015, 32(S1),221(in Chinese).潘柏州, 韦灼彬. 工程力学, 2015, 32(S1), 221.
[19] Han Chao. Experimental research on the fundamental mechanical beha-vior of seawater coral concrete. Master’s Thesis, Guangxi University, China,2011(in Chinese).韩超.海水拌养珊瑚混凝土基本力学性能试验研究.硕士学位论文,广西大学,2011.
[20] Mi Renjie, Yu Hongfa, Ma Haiyan, et al. Ocean Engineering, 2016, 34(4), 48(in Chinese).糜人杰, 余红发, 麻海燕, 等. 海洋工程, 2016, 34(4), 48.
[21] Bullen F. In:Proceedings of the Third International Colloquium on Concrete in Developing Countries. Beijing, 1990, pp.1.
[22] Zhu Shouyong, Shui Zhonghe, Yu Rui, et al. Bulletin of the Chinese Ceramic Society, 2017, 36(12), 3951(in Chinese).朱寿永,水中和,余睿,等.硅酸盐通报,2017,36(12),3951.
[23] Wang Lei, Fan Lei. China Concrete and Cement Products, 2015(1),1(in Chinese).王磊,范蕾.混凝土与水泥制品,2015(1),1.
[24] Qiao Hongxia, Gong Wei, Shi Yingying, et al. Emerging Materials Research, 2016, 5(2), 248.
[25] Hao Yunhong, Fan Jincheng, Xing Yongming, et al. Journal of Building Materials, 2017, 20(1), 124(in Chinese).郝贠洪,樊金承,邢永明,等. 建筑材料学报,2017, 20(1), 124.
[26] Cai Zhengyong,Wang Zuxian. Application of orthogonal design in concrete, China Architecture & Building Press, China,1985(in Chinese).蔡正泳,王足献. 正交设计在混凝土中的应用,中国建筑工业出版社, 1985.
[1] 胡建伟, 谢永江, 刘子科, 翁智财, 王月华, 何龙. 两阶段变速搅拌对高强混凝土稳定性的影响[J]. 材料导报, 2019, 33(z1): 229-233.
[2] 候昱灼, 廖洪强, 高宏宇, 程芳琴. 不同条件下聚苯颗粒泡沫混凝土的发泡过程及发泡体性能研究[J]. 材料导报, 2019, 33(z1): 234-238.
[3] 岳承军, 余红发, 麻海燕, 章艳, 梅其泉, 达波. 全珊瑚海水混凝土动态冲击性能试验研究[J]. 材料导报, 2019, 33(16): 2697-2703.
[4] 杨凯, 张之璐, 杨永, 韩昊, 黄文聪, 朱效宏, 唐德莎, 李爽, 杨长辉. 复合激发剂对碱矿渣胶结材水化进程及早期性能的影响[J]. 材料导报, 2019, 33(14): 2326-2330.
[5] 达波, 余红发, 麻海燕, 吴彰钰. 全珊瑚海水混凝土中不同种类钢筋的防腐蚀性能[J]. 材料导报, 2019, 33(12): 2002-2008.
[6] 胡明玉, 付超, 魏丽丽, 刘章君. 等钒铁渣复合物改性硅藻土制备高强耐水调湿材料[J]. 《材料导报》期刊社, 2018, 32(8): 1230-1235.
[7] 闫存富, 李淑娟. 陶瓷材料低温挤压自由成形工艺液相迁移研究[J]. 《材料导报》期刊社, 2018, 32(4): 636-640.
[8] 张洁, 张建建, 孙国文, 杨建明, 汤青青. 三种固废微粉对磷酸钾镁水泥浆体早期性能影响及作用机理[J]. 材料导报, 2018, 32(20): 3553-3561.
[9] 马宏强, 易成, 朱红光, 董作超, 陈宏宇, 王佳欣, 李德毅. 煤矸石集料混凝土抗压强度及耐久性能[J]. 《材料导报》期刊社, 2018, 32(14): 2390-2395.
[10] 张广泰, 田虎学, 李宝元, 张继飞, 王玉喜. 钢-聚丙烯混杂纤维混凝土的抗盐冻性能[J]. 《材料导报》期刊社, 2018, 32(14): 2396-2399.
[11] 方 圆,陈 兵. 玻璃纤维对磷酸镁水泥砂浆力学性能的增强作用及机理[J]. 《材料导报》期刊社, 2017, 31(24): 6-9.
[12] 姜玉丹,金祖权,陈永丰,范君峰. 高吸水树脂对混凝土水化及强度的影响[J]. 《材料导报》期刊社, 2017, 31(24): 40-44.
[13] 秦晓川, 孟少平, 涂永明. 高强混凝土材料细观冻融损伤与抗压强度的关系*[J]. 《材料导报》期刊社, 2017, 31(2): 117-120.
[14] 漆小鹏, 李文, 罗远方, 杨辉. 新型钇-羟基磷灰石骨水泥的制备及性能研究*[J]. CLDB, 2017, 31(13): 151-155.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[4] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] GUO Hongjian, JIA Junhong, ZHANG Zhenyu, LIANG Bunu, CHEN Wenyuan, LI Bo, WANG Jianyi. Microstructure and Tribological Properties of VN/Ag Films Fabricated by Pulsed Laser Deposition Technique[J]. Materials Reports, 2017, 31(2): 55 -59 .
[7] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[10] TAN Cao, DUAN Hongjuan, WANG Junkai, ZHANG Haijun, LIU Jianghao. Preparation of ZrB2 Ultrafine Powders via Molten-salt-mediated Magnesiothermic Reduction[J]. Materials Reports, 2017, 31(8): 109 -112 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed