Please wait a minute...
材料导报  2018, Vol. 32 Issue (24): 4392-4397    https://doi.org/10.11896/j.issn.1005-023X.2018.24.033
  高分子与聚合物基复合材料 |
汽车仪表板用聚氨酯搪塑粉料:组成、加工及流变性能
张万喜1, 常海建1,2, 窦艳丽1, 黄刚2,3, 张欢欢2,3, 许东华2, 石彤非2, 管东波1, 姚卫国1
1 吉林大学材料科学与工程学院,教育部汽车材料重点实验室,长春 130025;
2 中国科学院长春应用化学研究所,高分子物理与化学国家重点实验室,长春130022;
3 中国科学院大学,北京100049
Polyurethane Slush Powders for Instrument Panel of Automobiles: Composition, Processing and Rheological Properties
ZHANG Wanxi1, CHANG Haijian1,2, DOU Yanli1, HUANG Gang2,3, ZHANG Huanhuan2,3, XU Donghua2, SHI Tongfei2, GUAN Dongbo1, YAO Weiguo1
1 Key Laboratory of Automobile Materials,Ministry of Education,College of Materials Science and Engineering, Jilin University, Changchun 130025;
2 State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry,Chinese Academy of Sciences, Changchun 130022;
3 University of Chinese Academy of Sciences, Beijing 100049
下载:  全 文 ( PDF ) ( 1705KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作研究了汽车仪表板用聚氨酯搪塑粉料的组成与其加工及流变性能的关系。利用傅里叶变换红外光谱仪、核磁共振波谱仪、示差扫描量热仪、扫描电镜能谱仪、X射线衍射仪、热重分析仪和激光共聚焦显微镜研究发现,商用聚氨酯搪塑粉料的主要成分为热塑性聚酯型聚氨酯,无机填料为二氧化硅、二氧化钛和高岭土等无机粒子。通过光学显微镜观察聚氨酯搪塑粉料的熔融合并过程,得到了搪塑加工过程中适宜的加工温度和塑化时间。利用流变仪的线性频率扫描实验方法研究发现,聚氨酯搪塑粉料的熔体在高频区(短时间尺度)表现为类液性(损耗模量大于储能模量),在低频区(长时间尺度)表现出类凝胶特性(储能模量与损耗模量接近,且低频区模量出现平台)。上述实验结果表明,聚氨酯搪塑粉料的组成导致其熔体具有特殊的流变性能,即搪塑粉料中的热塑性聚酯型聚氨酯赋予搪塑粉料熔体类液性,而搪塑粉料中的无机粒子与聚氨酯相互作用形成网络结构,导致其熔体在长时间尺度下具有类凝胶特性。同时,研究发现,在搪塑加工过程中(搪塑模具上下旋转),由于聚氨酯搪塑粉料的熔体在长时间尺度下的类凝胶行为,当搪塑粉料粘附在搪塑模具表面时,熔体只熔融合并而不滴落或流挂,从而得到厚度更均匀的汽车仪表板表皮。并且搪塑成型的表皮不同位置的花纹粗糙度一致性较好。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张万喜
常海建
窦艳丽
黄刚
张欢欢
许东华
石彤非
管东波
姚卫国
关键词:  聚氨酯  搪塑  加工  流变  汽车    
Abstract: The influence of composition and processing of polyurethane slush powder for automobile instrument panel on its rheological properties was studied. The components of polyurethane slush powder were analyzed by Fourier transform infrared spectrometry, NMR spectra, differential scanning calorimeter, scanning electron microscopy spectrometer, X-Ray diffraction, thermogravimetric analysis and confocal laser scanning microscopy. It was found that the commercial polyurethane slush powder was mainly composed of thermoplastic polyester polyurethane, and inorganic fillers were consisted of silica, titanium dioxide and kaolin. The melting and merging of polyurethane slush powder under various temperatures were observed by optical microscope, and appropriate processing temperature and plasticizing duration for slush molding were obtained. The results of linear frequency sweep experiments carried out by rotational rheometer showed that the melt of polyurethane slush powder exhibited viscous-like behavior (loss modulus was larger than storage modulus) at high frequency (short-time scale), while gel-like behavior (storage modulus was close to loss modulus, and there was a plateau of moduli at low frequency) at low frequency (long-time scale). The above results indicated that the components of polyurethane slush powder endowed the melt with specific rheological characteristics. Namely, thermoplastic po-lyester polyurethane contributed to the viscous-like behavior of the melt, the network formed by the interaction between nanofillers and polyurethane resulted in the gel-like behavior of melt at long-time scale. Meanwhile, it was also found that during slush molding (the slush mold was rotated), thanks to the gel-like behavior of polyurethane slush powder melt at long-time scale, merging instead of dropping down or sagging was happened when the slush powder was adhered to the surface of mould, thus, a instrument panel skin with more uniform thickness was acquired. In addition, the roughness of patterns in various positions of slush skin was satisfactory.
Key words:  polyurethane    slush molding    processing    rheology    automobile
                    发布日期:  2019-01-23
ZTFLH:  TQ334.1  
基金资助: 国家自然科学基金(21274152;51473168;21234007);吉林省科技厅科技发展计划项目(20150301002GX)
通讯作者:  窦艳丽:通信作者,女,副教授,主要从事聚合物加工与合成的研究 E-mail:douyl@jlu.edu.cn   
作者简介:  张万喜:男,1954年生,教授,博士研究生导师,主要从事高分子纳米材料和高分子记忆材料的研究 E-mail:zhangwanxi0626@sina.com
引用本文:    
张万喜, 常海建, 窦艳丽, 黄刚, 张欢欢, 许东华, 石彤非, 管东波, 姚卫国. 汽车仪表板用聚氨酯搪塑粉料:组成、加工及流变性能[J]. 材料导报, 2018, 32(24): 4392-4397.
ZHANG Wanxi, CHANG Haijian, DOU Yanli, HUANG Gang, ZHANG Huanhuan, XU Donghua, SHI Tongfei, GUAN Dongbo, YAO Weiguo. Polyurethane Slush Powders for Instrument Panel of Automobiles: Composition, Processing and Rheological Properties. Materials Reports, 2018, 32(24): 4392-4397.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.24.033  或          http://www.mater-rep.com/CN/Y2018/V32/I24/4392
1 Štrumberger N, Gospocić A, Hvu M, et al. Polymeric materials in automobiles[J].Promet-Traffic & Transportation,2005,17:149.
2 Tang C. Slush technology of application auto interior decoration part[J].Journal of Shandong Jiaotong University,2001,16(1):1(in Chinese).
唐冲.汽车内饰件的搪塑技术[J].山东交通大学学报,2001,16(1):1.
3 Li B L. Study on key technologies of slush mould preparation and slushforming process[D].Changchun: Jilin University,2014(in Chinese).
李佰林.搪塑模具制备及搪塑工艺关键技术研究[D].长春:吉林大学,2014.
4 Sun R, Yuan X H, Zhou T P, et al. Material and technique of commercial vehicle instrument panel and its development[J].Auto Engineer,2014(4):15(in Chinese).
孙锐,袁学虎,周天平,等.商用车仪表板材料与工艺选择及发展趋势[J].汽车工程师,2014(4):15.
5 Wang J W. Overview of instrument panel skin processing technology[J].Technology Application,2010(3):54(in Chinese).
王继武.概述仪表板表皮加工技术[J].技术应用,2010(3):54.
6 Shinya F, Shinji W, Chikara O, et al. Resinpowdercomposition for slush molding and molded article: US,8399574B2[P].2013-03-19.
7 三洋化成工业株式会社.搪塑成型用聚氨酯树脂粒子:中国,201080054256.0[P].2012-09-05.
8 拜耳材料科学股份有限公司. 酯族可烧结热塑性聚氨酯及其用途:中国,200510135832.5[P].2006-06-28.
9 Zhang M, Xia Q, Wang H, et al. Study on properties of polyether and polyester polyurethane elastomer[J].China Plastic Industry,2013,41(2):87(in Chinese).
张敏,夏青,王昊,等.聚醚型与聚酯型聚氨酯弹性体的性能研究[J].塑料工业,2013,41(2):87.
10 Ye Q X. Brief introduction on synthesis of polyether/polyester composite-type polyurethane[J].Chemical Propellants & Polymeric Materials,2015,13(2):1(in Chinese).
叶青萱.聚醚/聚酯复合型聚氨酯合成简介[J].化学推进剂与高分子材料,2015,13(2):1.
11 Gardolinski J E, Carrera L C M, Cantao M P, et al. Layered polymer-kaolinite nanocomposites[J].Journal of Materials Science,2000,35(12):3113.
12 Zhang H, Tang L C, Zhang Z, Gu L, et al. Wear-resistant and transparent acrylate-based coating with highly filled nanosilicaparticles[J].Tribology International,2010,43(1-2):83.
13 Shdi H, Mohammad T S. Fumed silica/polyurethane nanocomposi-tes: Effect of silica concentration and its surface modification on rheology and mechanical properties[J].Iranian Polymer Journal,2016,25(8):697.
14 Sun J, Yu S P, Wen X Y, et al. Quality control of car instrument panel skinsproduced by slush molding processes[J].Enineering Plastic Application,2013(11):57(in Chinese).
孙军,于善平,闻向阳,等.汽车仪表板搪塑表皮的质量控制[J].工程塑料应用,2013(11):57.
15 Guan D B, Cai Z Y, Liu X C, et al. Rheological study on the cure kinetics of two-component addition cured silicone rubber[J].Chinese Journal of Polymer Science,2016,34(10):1290.
16 Hossein S T, Nazockdast H, Salehnia B, et al. Microphase separation and hard domain assembly in thermoplastic polyurethane/multiwalled carbon nanotube nanocomposites[J].Polymer Engineering & Science,2015,55(9):2163.
17 Akkoyun M, Suvaci E. Effects of TiO2, ZnO, and Fe3O4 nanofillers on rheological behavior, microstructure, and reaction kinetics of rigid polyurethane foams[J].Applied Polymer,2016,133(28):43658.
18 Peun C, Hu G H, Fernandez A, et al. Rheological and electrical percolation thresholds of carbon nanotube/polymer nanocomposite[J].Polymer Engineering & Science,2012,52(10):2173.
[1] 雷林, 杨庆波, 张志清, 樊祥泽, 李旭, 杨谋, 邓赞辉. AA2195铝锂合金多道次压缩行为及微观组织演变[J]. 材料导报, 2019, 33(z1): 348-352.
[2] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[3] 陈琛辉, 蒋璐瑶, 刘成龙, 黄伟九, 郭勇义, 胥桥梁. 搅拌摩擦加工细晶TA2工业纯钛晶粒长大规律[J]. 材料导报, 2019, 33(8): 1367-1370.
[4] 刘国军, 张生义, 钟明月, 张桂霞, 王艳, 余大平. BEM含量对MAA-EA-MMA共聚物乳液的pH响应性研究[J]. 材料导报, 2019, 33(8): 1422-1426.
[5] 张寒松, 胡志德, 晏华, 薛明, 贾艺凡. 纳米SiO2/黄原胶复合触变剂对磁流变液性能的影响[J]. 材料导报, 2019, 33(6): 1052-1056.
[6] 司雯, 曹明莉, 冯嘉琪. 纤维增强水泥基复合材料的流动性与流变性研究进展[J]. 材料导报, 2019, 33(5): 819-825.
[7] 孙国元, 张敏. 块体金属玻璃的加工硬化行为[J]. 材料导报, 2019, 33(3): 462-469.
[8] 戴红, 刘跃军, 崔玲娜, 李秋艾. PBSu/PBAu嵌段聚酯酰脲共聚物的合成及流变性能[J]. 材料导报, 2019, 33(2): 347-351.
[9] 王洁,赵萍,吕冰海,张韬杰,黄晟,杭伟,袁巨龙. 用于功能陶瓷材料超精密平面加工的固结磨具的研究进展[J]. 材料导报, 2019, 33(17): 2873-2881.
[10] 曹润倬, 周茗如, 周群, 何勇. 超细粉煤灰对超高性能混凝土流变性、力学性能及微观结构的影响[J]. 材料导报, 2019, 33(16): 2684-2689.
[11] 丁雨田, 陈建军, 李海峰, 高钰璧, 许佳玉, 马元俊. 均匀化态GH3625合金热加工图及短流程热挤压管材研究[J]. 材料导报, 2019, 33(16): 2753-2758.
[12] 田亚强, 黎旺, 郑小平, 宋进英, 魏英立, 陈连生. 两相区退火热轧中锰钢碳化物析出行为与组织性能研究[J]. 材料导报, 2019, 33(16): 2765-2770.
[13] 程国君, 产爽爽, 陈晨, 钱家盛, 丁国新, 王周锋. 改性剂对TiN/PS纳米复合材料流变行为的影响[J]. 材料导报, 2019, 33(14): 2444-2449.
[14] 王玉龙, 侯立杰, 刘志勇, 李世宇, 李卓辉. 水性聚氨酯改性环氧树脂乳液的涂膜性能研究[J]. 材料导报, 2019, 33(14): 2456-2460.
[15] 张宏, 刘新, 乔志. 沥青胶浆粘度及流变特性的影响因素研究[J]. 材料导报, 2019, 33(14): 2381-2385.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed