Please wait a minute...
材料导报  2018, Vol. 32 Issue (24): 4398-4404    https://doi.org/10.11896/j.issn.1005-023X.2018.24.034
  高分子与聚合物基复合材料 |
无级变速器润滑油的发展现状
李鑫1,2, 窦德龙3, 骆顺志4, 程越1,2
1 重庆理工大学汽车零部件先进制造技术教育部重点实验室,重庆 400054;
2 重庆理工大学车辆工程学院,重庆 400050;
3 北京航空航天大学机械工程及自动化学院,北京 100191;
4 东风汽车集团有限公司技术中心,武汉 430058
Development Status of Continuously Variable Transmission Lubricating Oil
LI Xin1,2, DOU Delong3, LUO Shunzhi4, CHENG Yue1,2
1 Key Laboratory of Advanced Manufacture Technology for Automobile Parts Ministry of Education, Chongqing University of Technology, Chongqing 400054;
2 Vehicle Engineering Institute, Chongqing University of Technololy, Chongqing 400050;
3 School of Mechanical Engineering and Automation, Beihang University, Beijing 100191;
4 Technical Center of Dongfeng Motor Group Co., Ltd., Wuhan 430058
下载:  全 文 ( PDF ) ( 1638KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 润滑油在无级变速器传动系统中除了发挥润滑冷却的作用外,还要具备合适的动静摩擦因数以及减磨的功效,从而满足传动系统高效长寿命的使用要求,是系统运行不可缺少的材料。 随着无级变速器的应用越来越广泛,其传动形式对润滑油的性能要求越来越高。无级变速器传动液对于无级变速器的传动效率和寿命有很大的影响。开发和应用新型自动变速器油及其相应的摩擦特性测试方法,磨损状态评定手段和油品理化性能测试方法及台架试验方法,制定自动变速器油的规格标准,是促进自动变速器发展的关键共性技术。介绍了常见的润滑油基础油和添加剂以及相关测试方法的国内外研究现状,并对无级变速器传动液的未来发展趋势进行了讨论和展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李鑫
窦德龙
骆顺志
程越
关键词:  无级变速器  润滑油  基础油  添加剂    
Abstract: In addition to the role of lubrication and cooling in the transmission system of the continuously variable transmission, the lubricating oil must have suitable dynamic and static friction factors and anti-wear effects to meet the requirements of efficient and long-life use of the transmission system, and is an indispensable material for system operation. With the increasing use of continuously variable transmissions, the transmission form requires increasingly higher performance for lubricating oils. Continuously variable transmission fluid (CVTF) has a large impact on the transmission efficiency and life of a continuously variable transmission (CVT). Development and application of new automatic transmission oil and its corresponding friction characteristics test method, wear condition evaluation method and oil physical and chemical performance test method and bench test method, formulate automatic transmission oil specifications, is a key common technology to promote the development of automatic transmission. This paper introduces the domestic and international research status of common lubricant base oils and additives and related test methods. Finally, discusse and forecast the future development trend of CVTF.
Key words:  continuously variable transmission    lubricating oil    base oil    additive
                    发布日期:  2019-01-23
ZTFLH:  TQ223  
基金资助: 2015年国家发改委、工信部“重点产业振兴与技术改造专项投资项目”——装备CVT无级变速器的高效大马力拖拉机产业化
作者简介:  李鑫:男,1969年生,副教授,主要从事新能源汽车传动及控制研究 E-mail:lixin_qc@cqut.edu.cn
引用本文:    
李鑫, 窦德龙, 骆顺志, 程越. 无级变速器润滑油的发展现状[J]. 材料导报, 2018, 32(24): 4398-4404.
LI Xin, DOU Delong, LUO Shunzhi, CHENG Yue. Development Status of Continuously Variable Transmission Lubricating Oil. Materials Reports, 2018, 32(24): 4398-4404.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.24.034  或          http://www.mater-rep.com/CN/Y2018/V32/I24/4398
1 Fu Bing, Zhou Yunshan, Hu Xiaolan,et al. Friction loss of steel ring of metal belt type continuously variable transmission[J].Journal of Mechanical Engineering,2018,54(14):169(in Chinese).
傅兵, 周云山, 胡哓岚, 等. 金属带式无级变速器钢环摩擦损失[J]. 机械工程学报, 2018, 54(14):169.
2 Fewkes R, Gunsing J, Sumiejsk J L. Lubricant as a construction element in the VDT push-belt CVT system[C]∥International Fuels & Lubricants Meeting & Exposition,1993:1.
3 Nilabh Srivastava, Imtiaz Haque. Transient dynamics of the metal V-Belt CVT: Effects of pulley flexibility and friction characteristic[J].Journal of Computational and Nonlinear Dynamics,2007,2(1):86.
4 Li Maosheng, Jia Jixin, Du Qungui. Tribological properties of automotive CVT oils [J].Lubrication and Sealing,2015,40(3):21(in Chinese).
李茂生,贾继欣,杜群贵.汽车无级变速器油(CVTF)的摩擦学特性[J].润滑与密封,2015,40(3):21.
5 Keiichi Narita. Lubricants for metal belt continuously variable transmissions[J].Lubricants,2014,2:11.
6 Narita K,Tamoto Y. Effect of lubricating base stocks on the transmittable torque capacity of metal V-belt pushing type CVT[C]∥Proceedings of the JSME International Conference on Motion and Transmissions, Sendai, Japan,2009:614.
7 Koichi Nakazawa, Hideaki Mitsui, Kazuki Kakegawa. Performance of a CVT fluid for high torque transmitting belt-CVTs[C]∥International Fuels & Lubricants Meeting & Exposition,1998:1.
8 许赢,许金宝.国内外车用聚α-烯烃(PAO)基础油现状与展望[J].精细与专用化学品,2018,26(11):1.
Xu Ying, Xu Jinbao. Current status and prospects of polyalphaolefin (PAO) base oils for vehicles at home and abroad[J].Fine and Specialty Chemicals,2018,26(11):1.
9 Cui J J, Li Y Q. PAO-ester and their applications in lubrication oils[J].Lubricating Oil,2004,19(2):7.
10 Shkolnikov V M, Zvetkov O N, Chagina M A, et al. Improvement of antioxidant and antiwear properties of polyalphaolefin oils[J].Journal of Synthetic Lubrication,1990,7(3):234.
11 Chen Zhuojun, Feng Longlong, Xu Jianing,et al. Tribological pro-perties of sulfurized isobutylene in ester synthetic oils[J].Lubrication and Sealing,2013,38(6):49(in Chinese).
陈卓君,冯龙龙,徐嘉宁,等.硫化异丁烯在酯类合成油中的摩擦学特性[J].润滑与密封,2013,38(6):49.
12 Willermet P A. Topicsin transmission tribology[J] .Lubrication Engineering,1999,55(2):39.
13 Narita K, Priest M. Boundary lubrication film formation from belt type CVT fluids[C]∥Integrated Power Trainand Driveline Systems, Essex,2006:39.
14 Keiichi Narita, Akihito Abe, Junichi Deshimaru, et al. Improvement of torque capacity of metal V-belt type CVT fluids[C]∥Internatio-nal Spring Fuels & Lubricants Meeting,2003:1.
15 Keiichi Narita, Toshiaki Iwai, Daisuke Takekawa. Lubricant additives for improving the performance of metal V-belt type CVTs[J].Tribology Online,2012,7(3):152.
16 Keiichi Narita, Junichi Deshimaru, Masayuki Kato. The influence of lubricating oil on the performance of a metal V-belt-type continuously va riable transmission[J].Lubrication Science,2010,16(2):139.
17 Takao Ishikawa, Yasuhiro Murakami, Rika Yauchibara, et al. The effect of belt-drive CVT fluid on the friction coefficient between me-tal components[C]∥International Fuels & Lubricants Meeting & Exposition,1997:11.
18 Keiichi Narita. Tribological properties of metal V-belt type CVT lubricant[J].Advances in Tribology,DOI:10.1155/2012/476028.
19 Li Maosheng, Du Qungui. Study on tribological properties of CVT fluid containing inert and active functional elements[J].Lubrication Research,2014,16(3):92.
20 Luo Tao, Chen Guoxu, Wang Ze’ai.Effect of lubricating additives on tribological properties of metal belt continuously variable transmission[J].Lubrication and Sealing,2010,35(2):76(in Chinese).
罗涛,陈国需,王泽爱.润滑添加剂对金属带式无级变速器油摩擦学性能的影响[J].润滑与密封,2010,35(2):76.
21 Fan Bingji, Li Jianchang, Ren Tianhui.Synergistic effect of friction characteristics of nitrogen-containing boronic acid esters and phosphate ester additives in PAO10[J].Lubrication and Sealing,2016,41(8):19(in Chinese).
范冰极,李建昌,任天辉.含氮硼酸酯与磷酸酯添加剂在PAO10中的摩擦特性协同效应[J].润滑与密封,2016,41(8):19.
22 Bys. Bec, Tonck A, et al. Relationship between mechanical properties and structures of zinc dithiophosphate anti-wear films[J].Mathematical, Physical and Engineering Sciences,1999,455(1992):4181.
23 Zhang Y, Yan J, Yu L, et al. Effect of nano-Cu lubrication additive on the contact fatigue behavior of steel[J].Tribology Letters,2010,37(2):203.
24 Zhang Huichen, She Yunchuan, Liu Shiyong,et al. Tribological mechanism of ZnO nanoparticles as lubricating oil additives[J].Mechanical Science and Technology,2003,22(3):468(in Chinese).
张会臣,佘云川,刘世永,等.ZnO纳米微粒作为润滑油添加剂的摩擦学作用机理[J].机械科学与技术,2003,22(3):468.
25 Gulzar M, Masjuki H H, Varman M, et al. Improving the AW/EP ability of chemically modified palm oil by adding CuO and MoS2 na-noparticles[J].Tribology International,2015,88:271.
26 Fujita H, Spikes H A. The formation of zinc dithiophosphate antiwear films[J].Engineering Tribology,2004,218(4):265.
27 Taylor L J, Spikes H A. Friction-enhancing properties of ZDDP antiwear additive: Part I—friction and morphology of ZDDP reaction films[J].Tribology Transactions,2003,46(3):303.
28 Zhao Zhiyu, Li Shaohui, Cui Haitao,et al. Several automatic transmission liquid oxidation stability test methods and their comparison[J].Test Evaluation Technology,2012(5):145(in Chinese).
赵志宇,李韶辉,崔海涛,等.几种自动传动液氧化安定性测试方法及其比较[J].测试评定技术,2012(5):145.
29 王军,刘文彬.汽车用制动液、传动液及添加剂[M].北京:化学工业出版社,2005.
30 Huang Shengjun, Wang Zeen, Wang Long, et al. Experimental study on evaluation of hydraulic oil T6H20C bench[J].Hydraulic Pneuma-tics and Seals,2017,37(9):67(in Chinese).
黄胜军,王泽恩,王龙,等.液压油T6H20C台架评定试验研究[J].液压气动与密封,2017,37(9):67.
31 Yang Yalian.Simulation of contact friction conditions of automotive continuously variable transmission[J].Journal of Chongqing University,2002,25(12):18(in Chinese).
杨亚联.汽车无级自动变速器接触摩擦条件的模拟[J].重庆大学学报,2002,25(12):18.
32 Pang Dan, Lv Xiaoren, Kang Jian,et al. Development of wear-gap adjustable ring block friction tester[J].Lubrication and Sealing,2017,42(9):103(in Chinese).
庞丹,吕晓仁,康健,等.磨损间隙调整式环块摩擦试验机的研制[J].润滑与密封,2017,42(9):103.
[1] 吴子彬, 宋森森, 董安, 杨宗武, 李雪科, 秦克, 张海涛, 班春燕, 李宝绵, 崔建忠, HiromiNagaumi. 铝-空气电池阳极材料及其电解液的研究进展[J]. 材料导报, 2019, 33(1): 135-142.
[2] 谢红梅, 蒋斌, 彭程, 潘复生. SiO2/MoS2复合纳米基润滑油在镁合金冷轧中的摩擦学性能及润滑机理[J]. 《材料导报》期刊社, 2018, 32(8): 1276-1282.
[3] 苏鹏, 熊云, 刘晓, 杨鹤, 范林君. 洋葱状纳米碳烟颗粒在基础油中的摩擦学性能[J]. 《材料导报》期刊社, 2018, 32(8): 1258-1262.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed