Please wait a minute...
材料导报  2019, Vol. 33 Issue (17): 2873-2881    https://doi.org/10.11896/cldb.19010017
  无机非金属及其复合材料 |
用于功能陶瓷材料超精密平面加工的固结磨具的研究进展
王洁1,2,赵萍1,吕冰海1,张韬杰1,黄晟1,杭伟1,袁巨龙1
1 浙江工业大学超精密加工研究中心,杭州 310014
2 杭州职业技术学院友嘉机电学院,杭州 310018
Research Progress of the Fixed Abrasive Tools for Ultra-precision Planar Machining of Functional Ceramics
WANG Jie1,2, ZHAO Ping1, LYU Binghai1, ZHANG Taojie1, HUANG Sheng1, HANG Wei1, YUAN Julong1
1 Ultra-precision Machining Center, Zhejiang University of Technology, Hangzhou 310014
2 Fair Friend Institute of Electromechanics, Hangzhou Vocational & Technical College, Hangzhou 310018
下载:  全 文 ( PDF ) ( 10813KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 功能陶瓷是可实现某种功能的无机非金属材料。以平面为重要工作面的功能陶瓷零部件及产品因具有优良的综合性能而被广泛应用于医疗民生和国防军工等领域。为更好地满足产品的功能要求,平面的加工质量需达到形状精度亚微米级、表面粗糙度纳米级,甚至更高水平。因此,功能陶瓷平面迫切需要超精密加工。磨料加工是超精密加工的重要方式,包含固结磨料和游离磨料加工这两种互为补充的方式。固结磨料加工是否能够满足被加工工件的超精密要求,磨具至关重要。磨削时所采用的砂轮,固结磨料研磨、抛光时所采用的研磨垫和抛光垫,均为固结磨具。
   功能陶瓷具有稳定的物理化学综合特性,使得其被加工后可长期保持加工精度;同时,这也决定了功能陶瓷的加工有别于金属材料、有机材料以及工程陶瓷。用于功能陶瓷材料超精密平面加工的固结磨具有别于普通加工的固结磨具,亟需针对性的研究。决定固结磨具能否满足加工要求的因素主要包括:磨具制备时,作为固结磨具的主要原料、磨料和结合剂的合理选择或改性;磨具使用中,可能出现的磨料钝化以及磨具表面被磨屑堵塞的现象;磨具表面宏观形貌的优化与否。
   近年来,国内外研究人员从功能陶瓷材料的不同去除机理出发选择磨料,针对固结磨料超精密平面加工的不同方式选择或改性结合剂,通过在线修整、表面结构化的方法使磨具长时间保持高效高精度的加工性能。由此所制备或选用的磨具被成功应用于硅、锗、蓝宝石、碳化硅、微晶玻璃、三硼酸锂等功能陶瓷材料的平面加工,达到超精密加工水平,可以满足不同领域相关产品的功能要求。
   本文综述了功能陶瓷材料的固结磨料超精密平面加工用磨具的研究进展,分别从磨具原料的选择、磨具的应用、磨具的在线修整和表面的结构化进行介绍,分析了以上四方面研究所面临的问题并展望了发展前景,以期为业界和相关研究人员以固结磨具超精密加工功能陶瓷平面提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王洁
赵萍
吕冰海
张韬杰
黄晟
杭伟
袁巨龙
关键词:  固结磨具  超精密平面加工  功能陶瓷  选材  结构化表面  自修整    
Abstract: unctional ceramics are inorganic non-metallic materials that can achieve certain functions.Functional ceramic parts and products with plane as an important working face are widely used in the fields of medical treatment, people's livelihood, national defense, military industry, etc.In order to better meet the functional requirements of the product, the processing quality of the plane needs to reach the sub-micron level of shape accuracy, nanometer level of surface roughness, or even higher level. Therefore, ultra-precision machining is urgently needed for functional ceramic plane.Abrasive processing is an important way of ultra-precision machining, including consolidated abrasive and free abrasive processing, which complement each other.Whether the fixed abrasive processing can meet the ultra-precision requirements of the processed workpiece, the abrasive tool is very important.The grinding wheel used in grinding, the lapping pad and the polishing pad used in fixed abrasive lapping and polishing are all fixed abrasive tools.
The stable physical and chemical properties of functional ceramics determine that the processing accuracy of functional ceramics can be maintained for a long time after being processed, which also determines the processing of functional ceramics is different from metal materials, organic materials and engineering ceramics. The fixed abrasive tools used in ultra-precision plane processing of functional ceramics are also different from those used in ordinary processing, so it is urgent to study them pertinently.The factors affecting whether the fixed abrasive tools can meet the processing requirements mainly include: reasonable selection or modification of abrasives and binders as main raw materials of consolidation abrasives in abrasive preparation; the passivation of abrasives and the blockage of abrasive debris on the surface of fixed abrasive tools may occur in the use; whether optimizing macro-topography of abrasive tool surface or not.
In recent years, researchers at home and abroad choose abrasives based on different removal mechanisms of functional ceramics, select or modify binders for different ultra-precision planar fixed abrasive processing, make the abrasive tools maintain high efficiency and high accuracy for a long time by means of in-process dressing and surface structuring. As a result, the fixed abrasive tools prepared or selected have been successfully applied in the planar processing of the functional ceramics materials, such as silicon, germanium, sapphire, silicon carbide, glass-ceramics, lithium triborate, and so on. The processing can achieve ultra-precision processing level, and meet the functional requirements of related products in different fields.
In this paper, the research progress of abrasives for ultra-precision surface machining of functional ceramics is reviewed.The selection of abrasive materials, application of fixed abrasive tools,in-process dressing of abrasives and surface structure are introduced respectively.The problems faced by the research are analyzed and the future are prospected, in order to provide a reference for the industry and relevant researchers to fixed abrasive tools for ultra-precision machining of functional ceramic plane.
Key words:  fixed abrasive tools    ultra-precision planar machining    functional ceramics material    material selection    structured surface    self-conditioning
               出版日期:  2019-09-10      发布日期:  2019-07-23
ZTFLH:  TM28  
  TQ174  
  TG580  
基金资助: 国家自然科学基金(51575492; 51605440); 中国博士后基金(2017M621966);浙江省公益技术研究项目(LGG19E050021);浙江省自然科学基金(LR17E050002)
作者简介:  王洁,2005年3月毕业于浙江大学,获得工学硕士学位。现为浙江工业大学超精密研究中心博士研究生,在袁巨龙教授的指导下进行研究。目前主要研究方向为功能陶瓷材料的超精密平面加工。
赵萍,浙江工业大学副教授,1987年浙江大学力学系获学士学位,多年来一直从事精密与超精密加工技术的研究与教学工作。主持或参与完成国家基金等项目16项,发表学术论文30余篇,获省部级科学技术奖5项。研究方向为超精密加工技术及装备。
袁巨龙,浙江工业大学教授。享受国务院政府特殊津贴、浙江省有突出贡献的中青年专家、钱江特聘专家。1989年获哈尔滨工业大学博士学位,浙江大学博士后、日本琦玉大学博士后。曾任湖南大学教授,国家高效磨削工程技术研究中心主任、特种装备与先进加工技术教育部重点实验室常务副主任,现任浙江工业大学超精密加工研究中心主任、中国磨粒技术委员会副主任、中国精密加工与纳米技术委员会副主任、国际磨粒技术委员会委员、日本精密工学会正会员等学术职务。主持完成国家科技支撑计划重点项目、国家自然科学基金重点项目、国家自然科学基金项目等重大重点项目30余项。出版著作5部,发表论文300余篇;获授权国家发明专利30余件。获国家科技进步二等奖1项、省部级科学技术奖一等奖6项。研究方向为高效超精密磨削、研磨抛光技术及装备。
引用本文:    
王洁,赵萍,吕冰海,张韬杰,黄晟,杭伟,袁巨龙. 用于功能陶瓷材料超精密平面加工的固结磨具的研究进展[J]. 材料导报, 2019, 33(17): 2873-2881.
WANG Jie, ZHAO Ping, LYU Binghai, ZHANG Taojie, HUANG Sheng, HANG Wei, YUAN Julong. Research Progress of the Fixed Abrasive Tools for Ultra-precision Planar Machining of Functional Ceramics. Materials Reports, 2019, 33(17): 2873-2881.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19010017  或          http://www.mater-rep.com/CN/Y2019/V33/I17/2873
1 Yuan J L. Ultraprecision machining of functional ceramics, Harbin Institute of Technology Press, China, 2000(in Chinese).袁巨龙. 功能陶瓷的超精密加工技术,哈尔滨工业大学出版社, 2000.2 Yu S Y, Lin B, Lin B. Diamond & Abrasives Engineering, 2001 (4), 36(in Chinese).于思远, 林滨, 林彬.金刚石与磨料磨具工程, 2001(4), 36.3 Yuan J L, Zhang F H, Dai Y F, et al.Journal of Mechanical Enginee-ring,2010,46(15),161(in Chinese).袁巨龙,张飞虎,戴一帆,等. 机械工程学报, 2010, 46(15),161.4 Liu F, Peng W, Yao C. International Journal of Computer Applications in Technology,2007, 29(2-4), 155.5 Peng W, Yi S P. Journal of Chongqing University, 2000, 23(3), 28 (in Chinese).彭伟,易树平.重庆大学学报, 2000, 23(3),28.6 Luo Q, Lu J, Xu X, et al.Ceramics International, 2017, 43(18), 16178.7 Zhao Y. Research on mechanism and process of polishing germanium thin wafer with ice fixed abrasives. Ph.D. Thesis, Nanjing University of Aeronautics and Astronautics,China, 2015(in Chinese).赵研. 冰冻固结磨料抛光单晶锗薄片的机理与工艺研究. 博士学位论文,南京航空航天大学, 2015.8 Kang J. The basic research on application of fixed abrasive chemical mechanical polishing to silicon wafer. Master's Thesis, Nanjing University of Aeronautics and Astronautics,China, 2010(in Chinese).康静. 固结磨料化学机械抛光硅片的应用基础研究. 硕士学位论文, 南京航空航天大学, 2010.9 Gagliardi J J, Kim D, Sokol J J, et al.Journal of Manufacturing Processes, 2013, 15(3), 348.10 Kim H M, Park G H, Seo Y G, et al.Wear, 2015, 332-333, 794.11 Wang H M. Model of surface roughness in fixed abrasive lapping of brittle & hard material.Master's Thesis, Nanjing University of Aeronautics and Astronautics,China, 2015(in Chinese).王慧敏. 固结磨料研磨硬脆材料表面粗糙度模型. 硕士学位论文,南京航空航天大学,2015.12 Khoshaim A B, Marinescu I D. International Journal of Abrasive Technology, 2014, 6(4), 324.13 Wang X, Zhang B Z. Acta Optica Sinica, 2014, 34(13), 403(in Chinese).王旭, 张斌智.光学学报, 2014, 34(13), 403.14 Wang Q, Wang Z, Chen S, et al.International Journal of Advanced Manufacturing Technology, 2017, 91, 537.15 Zhou L, Shimizu J, Eda H.International Journal of Manufacturing Technology & Management, 2005, 7(5), 441.16 Zhou L, Shiina T, Qiu Z, et al.Precision Engineering, 2009, 33(4), 499.17 Wu K, Zhou L, Shimizu J, et al.International Journal of Advanced Manufacturing Technology, 2016, 91(5-8), 1.18 Gao S.Fundamental research on silicon wafer thinning by ultra-precision grinding.Ph.D. Thesis, Dalian University of Technology, China, 2013(in Chinese).高尚.硅片超精密磨削减薄工艺基础研究.博士学位论文,大连理工大学,2013.19 Cheng G L. Grinding performance of soft abrasive grinding wheel used in ultra-precision grinding sapphire substrate. Master's Thesis, Dalian University of Technology, China, 2008 (in Chinese).程国良. 超精密磨削蓝宝石基片的软磨料砂轮磨削性能. 硕士学位论文,大连理工大学, 2008.20 Liu J H, Zhang X M, Wang L M. Modern Manufacturing Engineering, 2012(7),99 (in Chinese).刘建河, 张心明, 王黎明. 现代制造工程, 2012(7), 99.21 Xu Y C, Lu J, Xu X. Applied Surface Science, 2016, 389, 713.22 Zang J L. Fixed abrasive mechanical chemical polishing of single crystal sapphire substrate. Master's Thesis, Dalian University of Technology,China, 2013 (in Chinese).臧江龙. 单晶蓝宝石基片固结磨料机械化学抛光技术. 硕士学位论文, 大连理工大学, 2013.23 Li P P, Li J, Wang J B, et al. Journal of Synthetic Crystals, 2013, 42(11), 2258 (in Chinese).李鹏鹏, 李军, 王建彬, 等. 人工晶体学报, 2013, 42(11), 2258.24 Ju Z, Zhu Y, Wang J, et al. International Journal of Machining and Machinability of Materials, 2015, 17, 39.25 Li J, Wang W, Wang H, et al.International Journal of Advanced Manufacturing Technology, 2015, 78(1-4), 493.26 Cho B J, Kim H M, Manivannan R, et al.Wear, 2013, 302(1-2), 1334.27 Tian Y, Zhong Z, Ng J H.International Journal of Precision Engineering and Manufacturing, 2013, 14(8), 1447.28 Artini C, Muolo M L,et al. Journal of Materials Science,2011,47 (7), 3252.29 Liu X F, Li C H. The Chinese Journal of Nonferrous Metals,2001,11(3), 445(in Chinese).刘雄飞,李晨辉.中国有色金属学报,2001,11(3), 445.30 Ohmori H, Nakagawa T.CIRP Annals-Manufacturing Technology, 1990, 39(1), 329.31 Chen X. Materials Science and Engineering of Powder Metallargy,1998,3(2),135(in Chinese).陈霞. 粉末冶金材料科学与工程,1998,3(2), 135.32 Wang Y H, Zhang X H, Zang J B, et al.Surface and Coatings Technology,2011(19), 4627.33 Ma Y L, Guo Z M, Luo J, et al.Diamond & Abrasives Engineering,2011,31(5), 84(in Chinese).马毅龙,郭志猛,罗骥,等.金刚石与磨料磨具工程,2011,31(5), 84.34 Yang Y H, Yin Y H, Zhou H J, et al.Silicate Bulletin, 2017, 36 (1), 340 (in Chinese).杨玉鹤, 尹育航, 周浩钧, 等.硅酸盐通报, 2017, 36(1), 340.35 Yeh M K, Tai N H, Lin Y J. Composites Part A: Applied Science and Manufacturing (Incorporating Composites and Composites Manufactu-ring), 2008, 39(4),677.36 Linke, Barbara.Production Engineering, 2016, 10(3), 265.37 Yuan J L, Wang Z W, Hong T, et al.Journal of Micromechanics and Microengineering, 2009,19, 1.38 Tanaka T, Isono Y, Shindo T, et al.Journal of the Japan Society of Grin-ding Engineers, 1998, 42(9), 1406.39 Zhu Y W, Wang J, Li J, et al.China Mechanical Engineering, 2009 (6), 723(in Chinese).朱永伟, 王军, 李军, 等.中国机械工程, 2009(6), 723.40 Wang J B , Li Z , Zhu Y W , et al.Key Engineering Materials, 2018, 764, 106.41 Li J, Li B, Hu Z, et al.Journal of the Chinese Ceramic Society, 2013, 41(6), 789.42 Ma H, Guan B W, Wang Y W, et al.Materials Review A:Review Papers, 2015, 29(8),103 (in Chinese).马慧, 关博文, 王永维, 等.材料导报:综述篇, 2015, 29(8), 103.43 Guan B W, Tian H T, Ding D H, et al. Journal of Materials in Civil Engineering, 2018, 30(11), 04018275.44 Li Y, Li Z, Pei H, et al. Construction and Building Materials, 2016,102, 233.45 Wen J, Yu H F, Wu C Y, et al.Journal of the Chinese Ceramic Society, 2013, 41(5), 588 (in Chinese).文静, 余红发, 吴成友, 等.硅酸盐学报, 2013, 41(5),588.46 Li T. The research of high wear-resisting ceramics polishing abrasive tools. Master's Thesis, South China University of Technology,China, 2011 (in Chinese).李涛. 高耐磨陶瓷抛光磨具的研究.硕士学位论文, 华南理工大学, 2011.47 Gao S, Huang H, Zhu X, et al.Materials Science in Semiconductor Processing, 2017, 63, 97.48 Ebina Y, Hang W, Zhou L B, et al.Advanced Materials Research, 2012, 565, 22.49 Lin Z F, Gao S, Kang R K, et al.Journal of Synthetic Crystals, 2016, 45(5),1317(in Chinese).林智富, 高尚, 康仁科, 等.人工晶体学报, 2016, 45(5), 1317.50 Gao S, Kang R K, Dong Z G, et al. Advanced Manufacturing Processes, 2016, 32(2), 121.51 Zhang Y H, Lu J, Huang H, et al.Advanced Materials Research, 2012, 565, 302.52 Wang Z W. Research on the ‘trap' effect of semi-fixed abrasive plate for precision machining with high efficiency. Ph.D. Thesis, Zhejiang University of Technology, China, 2009(in Chinese).王志伟. 用于高效精密加工的半固结磨具的“陷阱”效应研究. 博士学位论文,浙江工业大学, 2009.53 Han R J, Sun H D, Xu D Q, et al.Optics and Precision Engineering, 1998, 6(5), 104(in Chinese).韩荣久,孙恒德,徐德全,等.光学精密工程, 1998, 6( 5), 104.54 Zhang F H, Xie D G, Zhao Q L, et al.Chinese Journal of Mechanical Engineering, 2002(1), 87(in Chinese).张飞虎,谢大纲,赵清亮,等.机械工程学报, 2002(1), 87.55 Zhao Y F. Study on the temperature field of low temperature consolidated abrasive polishing ofmonocrystalline silicon wafer. Master's Thesis, Nanjing University of Aeronautics and Astronautics,China, 2009(in Chinese).赵宇飞. 单晶硅片低温固结磨料抛光的温度场研究. 硕士学位论文,南京航空航天大学,2009.56 Wang Y. Basic research on polishing monocrystalline germanium slices with ice-fixed abrasive tools. Master's Thesis, Nanjing University of Aeronautics and Astronautics,China, 2017(in Chinese).王勇. 冰粒型固结磨具抛光锗单晶片的基础研究. 硕士学位论文,南京航空航天大学, 2017.57 Kramer D,Rehsteine F,Schumacher B. Annals CIRP, 1999, 48(1), 265.58 Hirao M, Izawa M.JSPE, 1998, 9,1335.59 Lee E S, Ahn S O.International Journal of Machine Tools & Manufacture, 1999, 39(10),1655.60 Wang Y, Wang S M.Advanced Materials Research, 2008, 53-54, 255.61 Chen F, Zhao B, Jia X, et al. Journal of Mechanical Engineering Science, 2017, 231(21),3987.62 Lin K. Performance evaluation and self-conditioning of fixed-abrasive pad. Master's Thesis, Nanjing University of Aeronautics and Astronautics,China, 2010(in Chinese).林魁. 固结磨料研磨抛光垫的性能评价及自修整机理的研究. 硕士学位论文,南京航空航天大学, 2010.63 Li J, Huang J, Xia L, et al.International Journal of Advanced Manufacturing Technology, 2016, 88, 107.64 Zheng F Z, Zhu N N, Zhu Y W, et al. International Journal of Advanced Manufacturing Technology, 2017, 90, 2217.65 Zhu L, Zhu Y W, Xu S, et al. Diamond & Abrasives Engineering, 2016, 36(1), 6 (in Chinese).朱琳, 朱永伟, 徐胜, 等.金刚石与磨料磨具工程, 2016, 36(1), 6.66 Lee T, Kim H, Lee S, et al.Journal of Mechanical Science & Technology, 2017, 31(12), 5649.67 Zhao Y, Zuo D, Sun Y, et al. International Journal of Advanced Manufacturing Technology, 2016, 85(5-8), 1045.68 Lv B H, Dong C C, Deng Q F, et al. Journal of Mechanical Engineering, 2014, 50(15), 172 (in Chinese).吕冰海, 董晨晨, 邓乾发, 等.机械工程学报, 2014, 50(15), 172.69 Guo B, Jin Q Y, Zhao Q L, et al. Journal of Harbin Institute of Technology, 2016, 48(7), 1(in Chinese).郭兵, 金钱余, 赵清亮,等. 哈尔滨工业大学学报, 2016, 48(7), 1.70 Heinzel C, Rickens K. CIRP Annals-manufacturing Technology, 2009, 58(1), 315.71 ZhangB, Fu Y C, Su H H. China Mechanical Engineering, 2014, 25(13), 1778(in Chinese).张贝, 傅玉灿, 苏宏华.中国机械工程, 2014, 25(13), 1778.72 Luo S Y, Yu T H, Liu C Y, et al. International Journal of Machine Tools & Manufacture, 2009, 49(3), 212.73 Wang X, Zhang F. Optics and Precision Engineering, 2012, 12(A01), 140.74 Li Q C, Shen J Y, Fang C F, et al.Key Engineering Materials, 2013, 6, 589.75 Yang Z Y. Study on polishing performance of ice fixed abrasive polishing pad with grooves. Master's Thesis, Nanjing University of Aeronautics and Astronautics,China, 2013(in Chinese).杨张一. 开槽冰冻固结磨料抛光垫的抛光性能研究. 硕士学位论文,南京航空航天大学, 2013.76 Tsai M Y, Wang S M, Tsai C C, et al.International Journal of Advanced Manufacturing Technology, 2015, 80(9-12),1511.77 Gao H, Yuan H P. Acta Armamentarii, 2011, 32(2),186(in Chinese).高航, 袁和平.兵工学报, 2011, 32(2), 186.78 Fang C , Zhao Z , Hu Z .IEEE Transactions on Semiconductor Manufacturing, 2017, 30(1), 78.79 Fang C F, Yan Z, Hu Z, et al. International Journal of Advanced Manufacturing Technology, 2018, 97(5-8), 2563.80 Fang C F, Liu C, Zhao Z, et al.Precision Engineering, 2018, 53,169.
[1] 刘强, 惠松骁, 宋生印, 叶文君, 于洋. 油气开发用钛合金油井管选材及工况适用性研究进展[J]. 材料导报, 2019, 33(5): 841-853.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed