Please wait a minute...
CLDB  2017, Vol. 31 Issue (5): 123-127    https://doi.org/10.11896/j.issn.1005-023X.2017.05.020
  水泥基材料 |
环保型石膏-水泥-火山灰胶凝体系的早期水化过程研究
王博元, 姚武
同济大学材料科学与工程学院,先进土木工程材料教育部重点实验室,上海 201804
Study on Early Hydration Process of an Environmentally-friendly Gypsum-Cement-Pozzolan Binder System
WANG Boyuan, YAO Wu
Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, School of Materials Science and Engineering, Tongji University, Shanghai 201804
下载:  全 文 ( PDF ) ( 1528KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 应用X射线衍射(X-ray diffraction,XRD)及热流仪研究了组分、水化环境对环保型石膏-水泥-火山灰胶凝体系(Gypsum-cement-pozzolan binder system,GCP)早期水化过程的影响。结果表明,胶凝体系水化后产物主要由钙矾石、生石膏、羟钙石、方解石以及非晶态CSH凝胶组成。随着水化龄期的延长,钙矾石的含量增加,而生石膏的含量减少。高效减水剂的掺入延缓了GCP胶凝体系的初期水化(0~70 h)。在原料中加入偏高岭土可以促进钙矾石的生成;而加入硅微粉则会抑制钙矾石的生成。羟钙石仅可在水化开始后的第一周内测得,之后会由于火山灰反应而被消耗。水中养护促进钙矾石的生成,阻碍试样与二氧化碳的接触,使得方解石的含量大幅下降。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王博元
姚武
关键词:  石膏-水泥-火山灰胶凝体系  X射线衍射  热流计    
Abstract: The effect of composition and hydration condition of an environmentally-friendly gypsum-cement-pozzolan binder system (GCP binder system) on its early hydration process was studied by means of X-ray diffraction (XRD) and heat flow calorimeter. It was found that the main hydration products of the GCP-slurry after the early hydration were ettringite, gypsum, portlandite, calcite and amorphous CSH phase. The content of ettringtie increased over time whereas the content of gypsum decreased. Results from heat flow calorimeter indicated the retarding effect of superplasticizer on the hydration process within the first 70 h of GCP bin-dersystem. Metakaolin could improve the formation of ettringite whereas microsilica could hinder it. Portlandite could only be mea-sured within the first week after hydration due to the pozzolanic reaction. The underwater hydration condition could promote the formation of ettringite and prevent the contact between the sample and carbon dioxide as well, which could lead to the reduction of calcite content.
Key words:  gypsum-cement-pozzolan binder system (GCP)    X-ray diffraction (XRD)    heat flow calorimeter
               出版日期:  2017-03-10      发布日期:  2018-05-02
ZTFLH:  TB321  
通讯作者:  姚武:,男,1966年生,博士,教授,博士研究生导师,主要研究方向为功能材料和智能材料 E-mail: yaowuk@tongji.edu.cn   
作者简介:  王博元:男,1988年生,博士研究生,主要研究方向为水泥基材料及低场核磁共振测试方法 E-mail: georgabcdfg@hotmail.com
引用本文:    
王博元, 姚武. 环保型石膏-水泥-火山灰胶凝体系的早期水化过程研究[J]. CLDB, 2017, 31(5): 123-127.
WANG Boyuan, YAO Wu. Study on Early Hydration Process of an Environmentally-friendly Gypsum-Cement-Pozzolan Binder System. Materials Reports, 2017, 31(5): 123-127.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.05.020  或          http://www.mater-rep.com/CN/Y2017/V31/I5/123
1 Hendriks C A, Worrell E, De Jager D, et al. Emission reduction of greenhouse gases from the cement industry[C]// Proceedings of the Fourth International Conference on Greenhouse Gas Control Technologies.1998.
2 Pearce F. Green foundations[J]. New Sci, 2002,175(2351):39.
3 McLellan B C, Williams R P, Lay J, et al. Costs and carbon emissions for geopolymer pastes in comparison to ordinary Portland cement[J]. J Cleaner Production,2011,19(9):1080.
4 Altmann H D, Winkler K G. Einsatz von Anhydritbaustoffen im Bauwesen der DDR[J]. Baustoffindustrie,1984,4:99.
5 Escalante-García J I, Rios-Escobar M, Gorokhovsky A, et al. Fluo-rgypsum binders with OPC and PFA additions, strength and reactivity as a function of component proportioning and temperature[J]. Cem Concr Compos,2008,30(2):88.
6 Yan P,et al. Microstructure and properties of the binder of fly ash-fluorogypsum-Portland cement[J].Cem Concr Res,1999,29(3):349.
7 Zhvironaite J,Lasys A,et al.Investigations of composite anhydrite-cement pozzolana binding material[J].Tile Brick Int,1998,14(3):176.
8 Rietveld H M. A profile refinement method for nuclear and magnetic structure[J]. J Appl Crystallography,1969,2(2):65.
9 Ag D L T, Cabeza A, Calvente A, et al. Full phase analysis of Portland clinker by penetrating synchrotron powder diffraction[J]. Anal Chem,2001,73(2):151.
10 Taylor J C, Hinczak I, Matulis C E. Rietveld full-profile quantification of Portland cement clinker: The importance of including a full crystallography of the major phase polymorphs[J]. Zhurnal Vyssheǐ Nervnoǐ Deiatelnosti Imeni I P Pavlova,2000,15(1):7.
11 Neubauer J, et al. Quantification of a mixture of synthetic alite and belite by the Rietveld method[J]. Mater Sci Forum,1996,228-231:807.
12 Guirado F, et al. Quantitative Rietveld analysis of aluminous cement clinker phases[J]. Cem Concr Res,2000,30(7):1023.
13 Pajares I, Del T Á G, Martínez-Ramírez S, et al. Quantitative analysis of mineralized white Portland clinkers: The structure of fluorellestadite[J]. Powder Diffraction,2002, 17(4):281.
14 Schmidt R, et al. Quantification of calcium sulpho-aluminate cement by Rietveld analysis[J].Mater Sic Forum,2000,321-324:1022.
15 Saoût G L, Lothenbach B, Hori A, et al. Hydration of Portland cement with additions of calcium sulfoaluminates[J]. Cem Concr Res,2013,43(1):81.
16 Torre A G D L, Aranda M A G. Accuracy in Rietveld quantitative phase analysis of Portland cements[J]. J Appl Crystallography,2003,36(5):1169.
17 Scrivener K L, Füllmann T, et al. Quantitative study of Portland cement hydration by X-ray diffraction/Rietveld analysis and independent methods[J]. Cem Concr Res,2004,34(9):1541.
18 Saoût G L, et al. Quantitative study of cementitious materials by X-ray diffraction/Rietveld analysis using an external standard[C]// International Congress on the Chemistry of Cem.Montréal,2007.
19 Stepkowska E T, Aviles M A, Blanes J M, et al. Gradual transformation of Ca(OH)2, into CaCO3, on cement hydration[J]. J Thermal Anal Calorimetry,2007,46(1):4886.
20 Gallner M. Gips-zement-puzzolan-bindemittel, untersuchungen zur dauerhaftigkeit und festigkeitsentwicklung[D]. Munich: Technical University of Munich,2012.
[1] 胡厅, 万红, 华叶, 龚瑾瑜, 陈兴宇. 石墨表面TiC梯度涂层的制备及结构调制[J]. 材料导报, 2019, 33(z1): 74-77.
[2] 杨飞跃, 赵爽, 陈国兵, 陈俊, 杨自春. Si3N4泡沫陶瓷的制备过程影响因素及复合化研究进展[J]. 材料导报, 2019, 33(z1): 178-183.
[3] 叶凯, 梁风, 姚耀春, 马文会, 杨斌, 戴永年. 直流电弧等离子体法制备纳米材料的研究进展[J]. 材料导报, 2019, 33(7): 1089-1098.
[4] 王译文, 王海斗, 马国政, 陈书赢, 何鹏飞, 丁述宇. Ti4O7功能陶瓷材料研究与应用现状[J]. 材料导报, 2019, 33(1): 143-151.
[5] 王俊杰, 房晶瑞, 汪澜. 水泥生产全过程硫循环机制的研究进展[J]. 材料导报, 2018, 32(23): 4160-4169.
[6] 王顺风, 马雪, 张祖华, 王爱国, 李亚林. 粉煤灰-偏高岭土基地质聚合物的孔结构及抗压强度[J]. 材料导报, 2018, 32(16): 2757-2762.
[7] 李延军, 刘冬华, 张电, 马昱昭. 含h-BN复相陶瓷制备及性能研究进展[J]. 材料导报, 2018, 32(15): 2609-2617.
[8] 李之锋, 罗垂意, 王春香, 钟盛文, 张骞. 无钴镍基正极材料LiNi0.7Mn0.3O2 氟掺杂改性研究[J]. 《材料导报》期刊社, 2018, 32(14): 2329-2334.
[9] 吴健, 关庆丰, 蔡杰, 吕鹏, 张从林, 李晨. 脉冲电子束作用下热障涂层微观结构及热循环性能[J]. 《材料导报》期刊社, 2018, 32(13): 2202-2207.
[10] 毕玉水. 时间控制/pH依赖型盐酸黄连素结肠给药系统的控释性能[J]. 《材料导报》期刊社, 2018, 32(12): 1973-1977.
[11] 贺春林,高建君,王苓飞,马国峰,刘岩,王建明. N2流量对反应共溅射TiN/Ni纳米复合膜结构和结合强度的影响[J]. 《材料导报》期刊社, 2018, 32(12): 2038-2042.
[12] 秦晓素,黄洁,雷云,杨泽斌,陈庆华,颜廷亭. 明胶/掺锶β-磷酸三钙/硫酸钙复合多孔支架的制备与性能[J]. 《材料导报》期刊社, 2018, 32(12): 1967-1972.
[13] 詹伟涛,贺建雄,王艺臻,姜宏. 羟基含量对全氧燃烧浮法玻璃结构弛豫的影响[J]. 《材料导报》期刊社, 2018, 32(12): 2062-2065.
[14] 袁琦, 茶丽梅, 明文全, 杨修波, 李石勇, 韩俊峰. 硒化温度对CIGS/Mo界面微观结构和化学成分的影响[J]. 《材料导报》期刊社, 2018, 32(11): 1787-1790.
[15] 苏文佳, 牛文清, 齐小方, 李琛, 王军锋. 定向凝固法多晶硅杂质控制数值模拟概述[J]. 《材料导报》期刊社, 2018, 32(11): 1795-1805.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed