Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (14): 143-146    https://doi.org/10.11896/j.issn.1005-023X.2017.014.030
  计算模拟 |
5083铝合金的热变形组织演变及晶粒度模型*
戴青松1,2, 欧世声1, 邓运来1,3, 付平2, 张佳琪3
1 中南大学材料科学与工程学院, 长沙 410083;
2 广西柳州银海铝业股份有限公司, 柳州 545006;
3 中南大学轻合金研究院, 长沙 410083;
Microstructure Evolution and Grain Size Model of 5083 Aluminum Alloy During Hot Deformation
DAI Qingsong1,2, OU Shisheng1, DENG Yunlai1,3, FU Ping2, ZHANG Jiaqi3
1 School of Materials Science and Engineering, Central South University, Changsha 410083;
2 Guangxi Liuzhou Yinhai Aluminum Co., Ltd., Liuzhou 545006;
3 Light Alloy Research Institute, Central South University, Changsha 410083;
下载:  全 文 ( PDF ) ( 1529KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过等温压缩实验、光学显微镜与透射电镜研究了变形温度300~450 ℃、应变速率0.01~1 s-1、真应变0.36~1.2范围内变形条件对5083铝合金热变形组织演变的影响。结果表明:升高热变形温度或降低应变速率均可促进5083铝合金的动态再结晶发生,使变形后5083铝合金位错密度降低,再结晶晶粒尺寸增大;随着应变量的增加,变形后合金的位错密度降低,动态再结晶程度增大。根据唯象理论的指数模型,利用线性回归方法建立了5083铝合金动态再结晶晶粒度模型,模型计算值与实测值吻合良好,平均相对误差仅为4.6%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
戴青松
欧世声
邓运来
付平
张佳琪
关键词:  5083铝合金  热变形条件  微观组织  动态再结晶  晶粒度模型    
Abstract: The influences of hot deformation condition upon the microstructure of 5083 aluminum alloy during compressing in the temperature range of 300—450 ℃, the strain rate range of 0.01—1 s-1 and the strain range of 0.36—1.2 were studied by means of isothermal compressive deformation, optical microscopy and transmission electron microscopy. The results show that both the increase of deformation temperature and the decrease of strain rate benefit dynamic recrystallization, which results in the decrease of the dislocation density of 5083 aluminum alloy and the increase of the recrystallization grains size. With the increase of strain of 5083 aluminum alloy, the dislocation density decreases and the volume fraction of dynamic recrystallization increases. According to the exponential model of phenomenological theory and the linear regression method, the dynamic recrystallization grain size model of 5083 aluminum alloy during the thermoplastic deformation was constructed, and the model calculation value coincided well with the experimental data, as the average relative error was only 4.6%.
Key words:  5083 aluminum alloy    hot deformation condition    microstructure    dynamic recrystallization    grain size model
               出版日期:  2017-07-25      发布日期:  2018-05-04
ZTFLH:  TG146.2+1  
基金资助: *广西科学研究与技术开发计划课题 (桂科重1598001-2;桂科重14122001-5)
作者简介:  戴青松:男,1989年生,博士研究生,研究方向为有色金属材料加工 E-mail:244034502@qq.com 邓运来:通讯作者,男,1969年生,博士,教授,博士研究生导师,研究方向为有色金属材料加工 E-mail:luckdeng@csu.edu.cn
引用本文:    
戴青松, 欧世声, 邓运来, 付平, 张佳琪. 5083铝合金的热变形组织演变及晶粒度模型*[J]. 《材料导报》期刊社, 2017, 31(14): 143-146.
DAI Qingsong, OU Shisheng, DENG Yunlai, FU Ping, ZHANG Jiaqi. Microstructure Evolution and Grain Size Model of 5083 Aluminum Alloy During Hot Deformation. Materials Reports, 2017, 31(14): 143-146.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.014.030  或          http://www.mater-rep.com/CN/Y2017/V31/I14/143
1 Zhang Haiyong, Yan Haipeng, Cao Jingyi, et al. Research on corrosion behavior of AA5083 Al alloy in seawater[J]. Mater Rev: Res,2015,29(11):105(in Chinese).
张海永, 闫海鹏, 曹京宜, 等. AA5083铝合金在海水中的腐蚀行为研究[J]. 材料导报:研究篇,2015,29(11):105.
2 Xu Xuefeng. Research on mechanical behavior and simulation and experiment of superplastic forming of 5083 alumimun alloy[D]. Nanjing: Nanjing University of Aeronautics and Astronautics,2009(in Chinese).
徐雪峰. 5083铝合金力学性能及超塑性成型数值模拟与实验研究[D]. 南京:南京航空航天大学,2009.
3 Cheng Sonyi, Cheng Kanghua, Jia Le, et al. Effect of hot deformation conditions on grain structure and properties of 7085 aluminum alloy [J]. Trans Nonferr Met Soc China,2013,23(2):329.
4 Liu Wenyi, Zhao Huan, Li Dan, et al. Hot deformation behavior of AA7085 aluminum alloy during is othermal compression at elevated temperature [J]. Mater Sci Eng A,2014,596:176.
5 Jiang Fulin, Zhang Hui, Meng Chunbiao, et al. Recrystallization of 3104 aluminum alloy during compression at elevated temperature[J]. Trans Mater Heat Treat,2011,32(3):52 (in Chinese).
蒋福林, 张辉, 蒙春标, 等. 3104 铝合金高温热压缩过程的再结晶[J]. 材料热处理学报,2011,32(3):52.
6 Zou B, Chen Z Q , Liu J H, et al. Microstructure evolution of hea-vily deformed AA5083 Al-Mg alloy studied by positron annihilation spectroscopy[J]. Appl Surf Sci,2014,296:154.
7 Lin Shuangping, Nie Zuoren, Huang Hui, et al. Annealing behavior of a modified 5083 aluminum alloy[J]. Mater Des,2010,31:1607.
8 Lee Y B, Shin D H, Park K T, et al. Effect of annealing temperature on microstructures and mechanical properties of a 5083 Al alloy deformed at cryogenic temperature[J]. Scr Mater,2004,51:355
9 Wu Wenxiang, Sun Deqin, Cao Chunyan, et al. Flow stress beha-vior of 5083 aluminum alloy under hot compression deformation[J]. Chin J Nonferr Met,2007,17(10):1667 (in Chinese).
吴文祥, 孙德勤, 曹春艳, 等. 5083铝合金热压缩变形流变应力行为[J]. 中国有色金属学报,2007,17(10):1667.
10 Zhang Fei, Shen Jian, Yan Xiaodong, et al. Dynamic softening mechanism of 2099 alloy during hot deformation process[J]. Acta Metall Sin,2014,50(6):691(in Chinese).
张飞, 沈建, 闫晓东, 等. 2099合金热变形过程中的动态软化机制[J].金属学报,2014,50(6):691.
11 Chen Guiqing, Fu Gaosheng, Yan Wenyan, et al. Experimental research on dynamic recrystallization of 3003 aluminum alloy[J]. J Mater Eng,2011(8):77 (in Chinese).
陈贵清, 傅高升, 颜文煅, 等. 3003铝合金动态再结晶实验研究[J]. 材料工程,22011(8):77.
12 Yang Dong, et al. Dynamic recrystallization grain size evolution model of 7075 aluminum alloy during hot deformation[J]. Trans Nonferr Met Soc China,2013,23(10):2747 (in Chinese).
杨栋,等. 7075铝合金热变形时动态再结晶晶粒度演化模型[J]. 中国有色金属学报,2013,23(10):2747.
13 Zhang Hui, Yang Libin, Peng Dashu, et al. Numerical simulation on microstructural evolution during multipass hot-rolling of aluminum alloys[J]. Trans Nonferr Met Soc China,2001,11(2):230.
14 Huang Xudong, Zhang Hui, Han Yi, et al. Hot deformation beha-vior of 2026 aluminum alloy during compression at elevated temperature [J]. Mater Sci Eng A,2010,527:485.
15 Li Zhoubing, Shen Jian, Yan Liangming, et al. Effects of strain rate on microstructure and mechanical properties of 7055 aluminum alloy[J]. Rare Met,2010,34(5):643 (in Chinese).
李周兵, 沈健, 闫亮明, 等. 应变速率对7055铝合金显微组织和力学性能的影响[J]. 稀有金属,2010,34(5):643.
16 Zhen Liang, Hu Huie, Wang Xinyun, et al. Distribution characte-rization of boundary misorientation angle of 7050 aluminum alloy after high-temperature compression[J]. J Mater Process Technol,2009,209:754.
17 Gourdet S, Montheillet F. A model of continuous dynamic recrystallization[J]. Acta Mater,2003,51:2685.
18 Livan F, Gianluca B. CDRX modelling in friction stir welding of aluminum alloys[J]. Int J Machine Tools Manuf,2005,45:1188.
[1] 雷林, 杨庆波, 张志清, 樊祥泽, 李旭, 杨谋, 邓赞辉. AA2195铝锂合金多道次压缩行为及微观组织演变[J]. 材料导报, 2019, 33(z1): 348-352.
[2] 康凤, 陈文, 胡传凯, 林军, 夏祥生, 吴洋. 时效参数对Ti12LC钛合金组织及性能的影响[J]. 材料导报, 2019, 33(z1): 326-328.
[3] 张冠星, 薛行雁, 龙伟民, 钟素娟, 孙华为, 董宏伟. BAg45CuZn钎料硫化处理组织和性能演变特性[J]. 材料导报, 2019, 33(z1): 425-427.
[4] 张亮亮, 王希靖, 刘骁. 6082-T6铝合金搅拌摩擦过程中动态再结晶方式对焊核区织构类型的影响[J]. 材料导报, 2019, 33(4): 665-669.
[5] 曹聪聪, 李文亚, 杨康, 李成新, 纪纲. 基体硬度和热学性质对冷喷涂TC4钛合金涂层组织和力学性能的影响[J]. 材料导报, 2019, 33(2): 277-282.
[6] 徐强, 洪悦, 李楠, 伍翠兰. 气体氮碳共渗中NH3和CO流量对低碳钢渗层组织及其性能的影响[J]. 材料导报, 2019, 33(2): 330-334.
[7] 丁雨田, 陈建军, 李海峰, 高钰璧, 许佳玉, 马元俊. 均匀化态GH3625合金热加工图及短流程热挤压管材研究[J]. 材料导报, 2019, 33(16): 2753-2758.
[8] 赵猛,张亮,熊明月. Sn-Cu系无铅钎料的研究进展及发展趋势[J]. 材料导报, 2019, 33(15): 2467-2478.
[9] 王剑豪,薛松柏,吕兆萍,王刘珏,刘晗. 纳米颗粒增强无铅钎料的研究进展[J]. 材料导报, 2019, 33(13): 2133-2145.
[10] 石磊, 柳翊, 沈俊芳, 金文中, 王黎, 张伟. P-ECAP挤压镁合金空心壁板的晶粒度演变模拟和实验研究[J]. 材料导报, 2019, 33(12): 2019-2024.
[11] 孟强, 车倩颖, 王快社, 张坤, 王文, 黄丽颖, 彭湃, 乔柯. 铝铜异种材料搅拌摩擦焊接接头微观组织与性能[J]. 材料导报, 2019, 33(12): 2030-2034.
[12] 钱昊, 杨银辉, 曹建春, 苏煜森. Fe-18Cr-9Mn-1.1Ni-1.1Mo-0.2N节Ni型双相不锈钢高温热变形行为[J]. 材料导报, 2019, 33(12): 2040-2046.
[13] 程晓农, 桂香, 罗锐, 杨雨童, 陈乐利, 王威, 王稳. 核电装备用奥氏体不锈钢的高温本构模型及动态再结晶[J]. 材料导报, 2019, 33(11): 1775-1781.
[14] 陈宇强, 宋文炜, 潘素平, 刘文辉, 宋宇锋, 张浩. 沉积颗粒对7N01-T6铝合金疲劳裂纹扩展行为的影响[J]. 材料导报, 2019, 33(10): 1697-1701.
[15] 蔡惠坤, 翁泽钜, 顾开选, 王凯凯, 郑建朋, 王俊杰. 硬质合金深冷处理研究进展[J]. 材料导报, 2019, 33(1): 175-182.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed