Please wait a minute...
材料导报  2022, Vol. 36 Issue (13): 21020114-12    https://doi.org/10.11896/cldb.21020114
  无机非金属及其复合材料 |
基于镁热还原硅藻土的硅基复合材料在电子器件中的应用
张育新*, 葛广谞, 席乾, 刘川燕, 饶劲松, 姚克欣
重庆大学材料科学与工程学院,重庆 400044
Application of Diatomosilicate Matrix Composites via Magnesium Thermal Reduction in Electronic Devices
ZHANG Yuxin*, GE Guangxu, XI Qian, LIU Chuanyan, RAO Jinsong, YAO Kexin
College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
下载:  全 文 ( PDF ) ( 8297KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 硅藻土凭借其天然的三维介孔及仿生结构、低合成成本等优势,逐渐成为了多学科交叉的研究热点之一。然而,其主要成分非晶态二氧化硅导致的高电阻率极大地限制了其在电子器件中的应用,通过改质处理的方法,硅藻土可以在保持原有结构的条件下转化为高电导率的硅藻硅,进而拓展其在电子器件中的应用。镁热还原法因操作简单、成本低且无污染而受到广泛关注。为了提高硅藻硅的产率与性能,减少Mg2SiO4、Mg2Si等中间产物的生成,研究者们在反应温度、反应时间、硅源与镁源的混合方式、原料物质的量比、慢化剂、原料种类等方面不断进行尝试和调控,最终确定了反应温度及反应时间等参数的最佳范围,促进了硅藻硅的高效规模化制备。
通过镁热还原制备的硅藻硅具有良好的结构稳定性、大的比表面积、天然的高孔隙率等优势,因此在锂电池、超级电容器、太阳能电池等电子器件中得到了极大的发展与应用。将镁热还原的硅藻硅作为锂离子电池的负极可有效解决电池在充放电过程中体积膨胀的问题。与其他的纳米结构相比,硅藻硅易于制备,在进一步负载电化学活性材料后拥有更高的电容量和循环稳定性。同时,硅藻硅的高孔隙率也促进了电化学活性材料的吸附和沉积,使其在超级电容器和太阳能电池的应用上展示出显著的优势。此外,硅藻硅良好的生物兼容性和发光特性使其在生物医药方面也有独特的应用。
本文综述了镁热还原硅藻土方法的发展和改进研究,各种电子器件(锂离子电池、超级电容器、太阳能电池、生物传感器等)应用硅藻硅的研究现状,最后展望了硅藻土镁热还原制备多孔硅的发展趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张育新
葛广谞
席乾
刘川燕
饶劲松
姚克欣
关键词:  硅藻土  镁热反应  复合材料  锂电池  电子器件    
Abstract: Diatomite has gradually become one of the hotspots in the interdisciplinary research by virtue of its natural three-dimensional mesoporous and bionic structure, low synthesis cost and other advantages. However, the main component of diatomite is amorphous SiO2, whose high resistivity greatly limits its application in electronic devices. Through the modifying process, diatomite can be converted into diatom-based silicon with high conductivity while maintaining the original structure, thereby promoting its application in electronic devices. The magnesiothermic reduction has attracted wide attention because of its simple operation, low cost and pollution-free. In order to promote the yield and performance of silicon and reduce the generation of intermediate products such as Mg2SiO4 and Mg2Si, researchers have experimented on the reaction temperature, the reaction time, the mixing mode of the silicon source and the magnesium source, the molar ratio of the raw materials, the moderator, the variety of raw materials, etc. Finally, the optimal range of parameters such as reaction temperature and reaction time are determined, which promotes the efficient large-scale preparation of diatom-based silicon.
Diatom-based silicon prepared by magnesiothermic reduction has been greatly developed and applied for electronic devices such as lithium batteries, supercapacitors and solar cells due to its excellent structural stability,large specific surface area, natural microporosity and so on. Moreover, it can be used as the negative electrode of lithium-ion batteries, effectively solving the problem of volume expansion during charging and discharging. The preparation of diatom-based silicon is simpler, compared with other nanostructures, and it has higher capacity and cycle stability after further loading electrochemically active materials. Besides, the high porosity of diatom-based silicon facilitates the adsorption and deposition of electrochemically active materials, giving it significant advantages in the application of supercapacitors and solar cells; in addition, it has unique application of biomedicine because of excellent biocompatibility and luminescence properties.
This paper summarizes the development and improvement of the magnesiothermic thermal reduction of diatomite, and the research status of the application of diatom-based silicon in various electronic devices (lithium ion batteries, supercapacitors, solar cells, biosensors, etc.). Finally, the development trend of the preparation of porous silicon from diatomite by magnesium thermal reduction is prospected.
Key words:  diatomite    magnesiothermic reduction    composite material    lithium ion battery    electronic device
出版日期:  2022-07-10      发布日期:  2022-07-12
ZTFLH:  TB34  
基金资助: 国家自然科学基金(U1801254)
通讯作者:  * zhangyuxin@cqu.edu.cn   
作者简介:  张育新,重庆大学材料科学与工程学院教授、博士研究生导师。分别于2000年和2003年本科和硕士毕业于天津大学化工学院,2008年博士毕业于新加坡国立大学化学与生物分子工程系,随后继续在曾华淳教授课题组从事博士后研究直到2009年。主要研究兴趣包括纳米材料的制备与应用、超级电容器电极材料的合成与形貌控制、光催化材料的先进设计及性能研究。在Nature Chemistry、Journal of the American Chemical Society、Advanced Materials、ACS Nano等期刊上共发表SCI论文190余篇。
引用本文:    
张育新, 葛广谞, 席乾, 刘川燕, 饶劲松, 姚克欣. 基于镁热还原硅藻土的硅基复合材料在电子器件中的应用[J]. 材料导报, 2022, 36(13): 21020114-12.
ZHANG Yuxin, GE Guangxu, XI Qian, LIU Chuanyan, RAO Jinsong, YAO Kexin. Application of Diatomosilicate Matrix Composites via Magnesium Thermal Reduction in Electronic Devices. Materials Reports, 2022, 36(13): 21020114-12.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21020114  或          http://www.mater-rep.com/CN/Y2022/V36/I13/21020114
1 Yu Y, Addaimensah J, Losic D. Langmuir, 2010, 26(17), 14068.
2 Crawford S A, Higgins M J, Mulvaney P, et al. Journal of Phycology, 2001, 37(4), 543
3 Zhang Y X, Huang M, Li F, et al. Journal of Power Sources, 2014,246,449.
4 Maher S, Kumeria T, Aw M S, et al. Advanced Healthcare Materials,2018,7(19),1800552.
5 Al-Degs Y, Khraisheh M A M, Tutunji M F. Water Research, 2001,35(15), 3724.
6 Du Y, Fan H, Wang L, et al. Journal of Materials Chemistry A, 2013, 1(26), 7729.
7 Caliskan N, Kul A R, Alkan S, et al. Journal of Hazardous Materials, 2011, 193, 27.
8 Wang M S, Fan L Z, Huang M, et al. Journal of Power Sources 2012,219, 29.
9 Jung K H, Shih S, Kwong D L. Electrochemical Society, 1993, 140(10), 3046.
10 Lim P, Brock J R, Traehtenberg I. Applied Physics Letters, 1992, 60(4), 486.
11 Chen Q W, Zhu J S, Li X G, et al. Physics Letters A, 1996, 220(4-5), 293.
12 Zacharatos F, Glanneta V, Nassiopoulou A G. Physica Status Solidi A, 2009, 206(6), 1286.
13 Nagamori M, Malinsky I, Claveau A. Metallurgical Transactions B, 1986,17(3), 503.
14 Bao Z H, Weatherspoon M R, Shian S, et al. Nature: International Weekly Journal of Science, 2007, 446(7132), 172.
15 Richman E K, Kang C B, Brezesinski T, et al. Nano Letters,2008,8(9),3075.
16 Kim K H, Lee D J, Cho K M, et al. Scientific Reports, 2015, 5(1), 1.
17 Lin N, Han Y, Zhou J, et al. Energy & Environmental Science,2015,8(11),3187.
18 Zhou Z W, Liu Y T, Xie X M, et al. Chemical Communications, 2016, 52(54), 8401.
19 Choi S, Bok T, Ryu J, et al. Nano Energy, 2015,12, 161.
20 Nohira T, Yasuda K, Ito Y. Nature Materials, 2003, 2(6), 397.
21 Nagamori M, Malinsky I, Claveau A. Metallurgical Transactions B, 1986, 17(3), 503.
22 Yasuda K, Nohira T, Takahashi K, et al. Journal of the Electrochemical Society, 2005, 152, 12.
23 Inasawa S, Ono Y, Mizuguchi T, et al. CrystEngComm, 2017,19(19), 2681.
24 Peng S, Norihisa U, Susumu I, et al. Langmuir,2010,26(16), 13522.
25 Choi S, Bok T, Ryu J, et al. Nano Energy, 2015, 12, 161.
26 Yu Y,Gu L, Zhu C, et al. Advanced Materials,2010,22(20), 2247.
27 Bao Z H, Weatherspoon M R, Shian S, et al. Nature, 2007,446(7132), 172.
28 Wang M S, Fan L Z, Huang M, et al. Journal of Power Sources,2012,219, 29.
29 Jia H, Gao P, Yang J, et al. Advanced Energy Materials, 2011,1(6), 1036.
30 Gao S L, Yang D D, Pan Y Y, et al. Electrochimica Acta, 2019, 327, 135058.
31 Cui J L, Cui Y F, Li S H, et al. ACS Applied Materials & Interfaces, 2016, 8(44), 30239.
32 Geng L, Yang D, Gao S, et al. Advanced Materials Interfaces,2020,7(3), 1901726.
33 Lai Y, Thompson J R, Dasog M. Chemistry-A European Journal, 2018, 24(31),7913.
34 Mishra K, Zheng J, Patel R, et al. Electrochimica Acta, 2018, 269,509.
35 Kuang S J, Xu D H, Chen W Y, et al. Applied Surface Science, 2020, 521, 146497.
36 Fang D L, Zhao Y C, Wang S S, et al. Electrochimica Acta, 2020, 330, 135346.
37 李永利, 张久兴. 中国专利, CN101348242A, 2009.
38 傅正义, 张帆, 张金咏, 等. 中国专利, CN101357762A, 2009.
39 包志豪, 陈珂. 中国专利, CN102259858A, 2011.
40 Bao Z H, Weatherspoon M R, Shian S, et al. Nature, 2007, 446(7132),172.
41 Richman E K, Kang C B, Brezesinski T, et al. Nano Letters, 2008, 8(9), 3075.
42 Gallego-Gómez F, Ibisate M, Golmayo D,et al. Advanced Materials, 2011, 23(44), 5219.
43 Khripin C Y, Pristinski D, Dunphy D R, et al. ACS Nano, 2011, 5(2), 1401
44 Zhang Y, Huang J. Journal of Materials Chemistry, 2011, 21(20), 7161.
45 Yoo J K, Kim J, Jung Y S, et al. Advanced Materials, 2012, 24(40), 5452.
46 Tao H C, Fan L Z, Qu X. Electrochimica Acta, 2012, 71, 194.
47 尉海军, 崔敏, 王琳. 中国专利, CN108493412 A, 2018.
48 Liu H B. Research on mesoporous Si/MWNT composite anode materials for lithium-ion battery. Master's Thesis, Northeast Dianli University, China, 2016 (in Chinese).
刘洪兵. 锂离子电池多孔硅/碳纳米管复合负极材料的研究. 硕士学位论文, 东北电力大学, 2016.
49 Larbi K K, Barati M, McLean A. Canadian Metallurgical Quarterly, 2011,50(4), 341.
50 Xie J, Wang G, Huo Y, et al. Electrochimica Acta, 2014,135, 94.
51 Lai Y, Thompson J R, Dasog M. Chemistry-A European Journal,2018,24(31), 7913.
52 Entwistle J, Rennie A, Patwardhan S. Journal of Materials Chemistry A, 2018,6(38), 18344.
53 Barati M, Sarder S, McLean A, et al. Journal of Non-crystalline Solids,2011,357(1), 18.
54 Wu H, Du N, Shi X, et al. Journal of Power Sources, 2016, 331, 76.
55 Chen W, Fan Z, Dhanabalan A, et al. Journal of the Electrochemical Socicty, 2011, 158 (9), A1055.
56 Cunin F, Schmedake T A, Link J R, et al. Nature Materials, 2002, 1(1),39.
57 Luo W, Wang X, Meyers C, et al. Scientific Reports, 2013, 3(1), 1.
58 Yang Z, Du Y, Hou G, et al. Electrochimica Acta, 2020, 329, 135.
59 Dean J A. Lange's handbook of chemistry, McGraw-Hill Press, USA, 1999.
60 Batchelor L, Loni A, Canham L T, et al. Silicon, 2012,4(4), 259.
61 Favors Z, Wang W, Bay H H, et al. Scientific Reports,2014,4, 5623.
62 吴复忠, 王霄, 戴新义, 等. 中国专利, CN110371982A, 2019.
63 彼得·吉格莱尔. 中国专利, CN108778995A, 2018.
64 Aggrey P, Salimon A I, Abdusatorov B, et al. Materials Today: Procee-dings, 2020,33, 1884.
65 Yu X L.Preparation and electrochemical study of silicom-carbon composite anode materials for lithium ion batteries. Master's Thesis, Shanghai Jiao Tong University, China, 2013 (in Chinese).
于晓磊.锂离子电池用高性能硅碳复合负极材料的制备与性能研究. 硕士学位论文, 上海交通大学, 2013.
66 彼得·吉格莱尔, 于尔根·施托莱尔. 中国专利, CN107074560A, 2017
67 张育新, 姜徳彬, 刘晓英, 等. 中国专利, CN108110239A, 2018.
68 Liu X, Giordano C, Antonietti M. Journal of Materials Chemistry, 2012, 22(12), 5454.
69 Liu N, Huo K, McDowell M T, et al. Scientific Reports,2013,3(1), 1.
70 Xing A, Tian S, Tang H, et al. RSC Advances, 2013,3(26), 10145.
71 Liu S H, Liu B, Yao Y C, et al. Journal of Wuhan University of Techno-logy-Mater, 2016, 31(5), 965.
72 Jia H, Gao P, Yang J, et al. Advanced Energy Materials,2011,1(6), 1036
73 Liang J W, Li X N, Hou Z G, et al. ACS Nano,2016, 10(2), 2295.
74 Entwistle J, Rennie A, Patwardhan S. Journal of Materials Chemistry A,2018,6(38), 18344.
75 Brandt K. Solid State Ionics, 1994, 69(3-4), 173.
76 Patil A, Patil V, Shin D W, et al. Materials Research Bulletin, 2008, 43(8-9), 1913.
77 Crowther O, West A C. Journal of the Electrochemical Society, 2008, 155(11), A806.
78 Aurbach D, Ein-Eli Y, Chusid O. Journal of the Electrochemical Society,1994,141(3), 603.
79 Endo M, Kim C, Nishimura K, et al. Carbon, 2000,38(2), 183.
80 Dahn J R, Xing W, Gao Y. Carbon, 1997,35(6), 825.
21020114-1181 Zhang W J. Journal of Power Sources, 2011,196(1), 13.
82 Winter M, Besenhard J O. Electrochimica Acta, 1999, 45(1-2), 31.
83 Machill S, Rahner D. Journal of Power Sources, 1997, 68(2), 506.
84 Idota Y, Kubota T, Matsufuji A, et al. Science, 1997, 276(5317), 1395.
85 Grugeon S, Laruelle S, Urbina R H, et al. Journal of the Electrochemical Society, 2001, 148(4), A285.
86 Ohzuku T, Ueda A. Solid State Ionics, 1994, 69(3-4), 201.
87 Nishijima M, Kagohashi T, Takeda Y, et al. Journal of Power Sources, 1997, 68(2), 510.
88 Li X Q, Xing Y F, Xu J, et al. Chemical Communications, 2020, 56(3), 364.
89 Liu H K, Guo Z P, Wang J Z. Journal of Materials Chemistry, 2010, 20(45), 10055.
90 Huggins R A. Journal of Power Sources, 1999, 81,13.
91 Choi N S, Yew K H, Kim H, et al. Journal of Power Sources, 2007, 172(1),404.
92 Gordon R, Drum R W. International Review of Cytology, 1994, 150, 243.
93 Jeffryes C, Campbell J, Li H, et al. Energy & Environmental Science, 2011, 4(10), 3930.
94 Yao Y, McDowell M T, Ryu I, et al. Nano Letters, 2011, 11(7),2949.
95 Chen Y F, Zhang J Q, Chen X Q, et al. Ceramics International, 2019, 45(14), 17040.
96 Wang H J, Tang W, Ni L S, et al. Journal of Physics and Chemistry of Solids, 2020, 137, 109227.
97 Favors Z, Bay H H, Mutlu Z, et al. Scientific Reports, 2015, 5, 8246.
98 Zhang R Y, Du Y J, Li D, et al. Advanced Materials, 2014, 26(39), 6749.
99 Cao F F, Deng J W, Xin S, et al. Advanced Materials, 2011,23(38), 4415.
100 Yu Y, Gu L, Zhu C, et al. Advanced Materials, 2010, 22(20),2247.
101 Lotfabad E M, Kalisvaart P, Kohandehghan A. Journal of Materials Chemistry A, 2014, 2(8), 2504.
102 Wang Q P, Guo C, He J P, et al. Journal of Alloys and Compounds, 2019, 795, 284.
103 Kwon S, Kim K H, Kim W S, et al. Nanotechnology, 2019, 30(40), 405.
104 Zhou F, Li Z, Lu Y Y, et al. Nature Communications, 2019, 10(1), 2482.
105 张瑛洁, 赵丽文, 楚华, 等. 中国专利, CN102602022A, 2017.
106 Zeng J, Peng C, Wang R, et al. Transactions of Nonferrous Metals Society of China, 2019, 29(11),2384.
107 Zhou N, Wu Y, Li Y, et al. Applied Surface Science, 2020,500, 144026.
108 Pan Q, Zhao J, Xing B, et al. New Journal of Chemistry, 2019, 43(38), 15342.
109 Zhang P, Ru Q, Gao Y, et al. Ionics, 2019, 25(10), 4675.
110 Zhang X, Huang L, Zeng P, et al. Chemelectrochem, 2018, 5(18), 2584.
111 Kim J W, Ryu J H, Lee K T, et al. Journal of Power Sources, 2005, 147(1-2), 227.
112 Shen L, Wang Z, Chen L. RSC Advances, 2014, 4(29), 15314.
113 Tang X, Wen G, Song Y. Journal of Alloys and Compounds, 2018, 739, 510.
114 Campbell B, Ionescu R, Tolchin M, et al. Scientific Reports, 2016, 6, 33050.
115 Wang M S, Fan L Z, Huang M, et al. Journal of Power Sources, 2012, 219, 29.
116 Wang J, Liu D H, Wang Y Y, et al. Journal of Power Sources, 2016, 307, 738.
117 Santhanagopalan S, Balram A, Meng D D. ACS Nano, 2013, 7(3), 2114.
118 Zhang Y J, Chu H, Zhao L W, et al. Journal of Materials Science: Materials in Electronics, 2017, 28(9), 6657.
119 Yuan C, Zhang X, Su L, et al. Journal of Materials Chemistry, 2009,19(32), 5772.
120 Santhanagopalan S, Balram A, Meng D D. ACS Nano, 2013, 7(3), 2114.
121 Huang M, Li F, Dong F, et al. Journal of Materials Chemistry A, 2015,3(43),21380.
122 Liang R, Cao H, Qian D. Chemical Communications, 2011, 47(37),10305.
123 Qu Q, Zhu Y, Gao X, et al. Advanced Energy Materials, 2012, 2(8), 950.
124 Wang Z, Ma C, Wang H, et al. Journal of Alloys and Compounds, 2013,552,486.
125 Zhang Y X, Huang M, Kuang M, et al. International Journal of Electrochemical Science, 2013, 8(1), 1366.
126 Luo X, Zhong M, He P, et al. Journal of Alloys and Compounds, 2020, 826, 154241.
127 Hossain A, Bandyopadhyay P, Guin P S, et al. Applied Materials Today, 2017,9, 300.
128 Yi H, Wang H, Jing Y, et al. Journal of Power Sources, 2015,285, 281.
129 Xin Z W, Shen H L, Tang Q T, et al. Acta Materiae Compositae Sinica, 2016, 33(9), 2082 (in Chinese).
邢正伟, 沈鸿烈, 唐群涛, 等. 复合材料学报, 2016, 33(9), 2082.
130 Zhang Y X, Li F, Huang M, et al. Materials Letters, 2014, 120, 263.
131 Guo X L, Kuang M, Li F, et al. Electrochimica Acta, 2016, 190, 159.
132 Wen Z Q, Li M, Li F, et al. Dalton Transactions (Cambridge, England: 2003), 2016, 45(3), 936.
133 Li F, Xing Y, Huang M, et al. Journal of Materials Chemistry A, 2015, 3(15), 7855.
134 Le Q J, Wang T, Tran D N H, et al. Journal of Materials Chemistry A, 2017, 5(22), 10856.
135 Lee Y, Park C, Balaji N, et al. Israel Journal of Chemistry, 2015,55(10), 1050.
136 Benanti T L, Venkataraman D. Photosynthesis Research, 2006, 87(1), 73.
137 Gurney R S, Lidzey D G, Wang T. Reports on Progress in Physics, 2019, 82(3),036601.
138 Dennler G, Sariciftci N S. Proceedings of the IEEE, 2005, 93(8), 1429.
139 Yella A, Lee H W, Tsao H N, et al. Science, 2011, 334(6056), 629.
140 Gonçalves L M, de Zea Bermudez V, Ribeiro H A, et al. Energy & Environmental Science, 2008, 1(6),655.
141 Wang Y C, Wang D Y, Jiang Y T, et al. Angewandte Chemie (International Edition in English), 2013, 52(26), 6694.
142 Yu C, Meng X T, Song X D, et al. Carbon, 2016, 100,474.
143 Jeffryes C, Campbell J, Li H, et al. Energy & Environmental Science, 2011, 4(10), 3930.
144 Noll F, Sumper M, Hampp N. Nano Letters,2002, 2(2), 91.
145 Mishra M, Arukha A P, Bashir T, et al. Frontiers in Microbiology, 2017, 8,1239.
146 O'Regan B, Grätzel M. Nature, 1991,353(6346), 737.
147 Nazeeruddin M K, Kay A, Rodicio I. Journal of the American Chemical Society, 1993,115(14), 6382.
148 Hoshikawa T, Ikebe T, Yamada M, et al. Journal of Photochemistry and Photobiology A-Chemistry, 2006, 184(1-2), 78.
149 Losic D, Triani G, Evans P J, et al. Journal of Materials Chemistry, 2006, 16(41), 4029.
150 Chandrasekaran S, Sweetman M J, Kant K. Chemical Communications (Cambridge), 2014, 50(72), 10441.
151 Chandrasekaran S, Nann T, Voelcker N H. Nano Energy, 2015, 17, 308.
152 Fuhrmann T, Landwehr S, Rharbi-Kucki M E, et al. Applied Physics B-Lasers and Optics, 2004, 78(3-4),257.
153 Yamanaka S, Yano R, Usami H, et al. Journal of Applied Physics, 2008, 103(7), 074701.
154 Noyes J, Sumper M, Vukusic P. Journal of Materials Research, 2011, 23(12), 3229.
155 Caprio G D, Coppola G, Stefano L D, et al. Journal of Biophotonics, 2014, 7(5), 341.
156 Kong X, Squire K, Li E, et al. IEEE Trans Nanobioscience, 2016, 15(8),828.
157 Lin K C, Kunduru V, Bothara M, et al. Biosensors and Bioelectronics, 2010, 25(10), 2336.
158 Stefano L D, Rotiroti L, Stefano M D, et al. Biosensors and Bioelectro-nics,2009, 24(6),1580.
159 Gale D K, Gutu T, Jiao J, et al. Advanced Functional Materials, 2009, 19(6), 926.
160 Rea I, Terracciano M, Chandrasekaran S, et al. Nanoscale Research Letters,2016, 11(1), 405.
161 Shahbazi M A, Herranz B, Santos H A. Biomatter,2012, 2(4), 296.
162 Aw M S, Simovic S, Addai-Mensah J, et al. Nanomedicine, 2011, 6(7), 1159.
163 Aw M S, Simovic S, Yu Y, et al. Powder Technology, 2012, 223, 52.
164 Zhang H, Shahbazi M A, Mäkilä E M, et al. Biomaterials, 2013, 34(36),9210.
165 Bariana M, Aw M S, Losic D. Advanced Powder Technology, 2013, 24(4), 757.
166 Losic D, Yu Y, Aw M S, et al. Chemical Communications, 2010, 46(34), 6323.
167 Todd T, Zhen Z, Tang W, et al. Nanoscale, 2014, 6(4), 2073.
168 Kumeria T, Bariana M, Altalhi T, et al. Journal of Materials Chemistry B, 2013, 1(45),6302.
169 Vasani R B, Losic D, Cavallaro A, et al. Journal of Materials Chemistry B, 2015, 3(21), 4325.
170 Borak B, Biernat P, Prescha A, et al. Advances in Clinical and Experimental Medicine, 2012,21(1), 13.
171 Tzur-Balter A, Shatsberg Z, Beckerman M, et al. Nature Communications,2015,6(1), 1.
172 Maher S, Alsawat M, Kumeria T, et al. Advanced Functional Materials, 2015, 25, 32.
173 Maher S, Kumeria T, Wang Y, et al. Advanced Healthcare Materials, 2016, 5(20), 2667.
174 Osminkina L A, Tamarov K P, Sviridov A P, et al. Journal of Biophotonics, 2012, 5(7), 529.
175 Lee C, Hong C, Lee J, et al. Lasers in Medical Science,2012,27(5), 1001.
176 Wang X K, Wang J S, Du Y C, et al. Materials Reports A: Review Paper, 2020, 34(3), 17(in Chinese).
王学凯, 王金淑, 杜玉成, 等.材料导报:综述篇, 2020, 34(3), 17.
177 Zhou Q, Wang R Q, Lin B, et al. Journal of Chongqing University of Technology(Natural Science), 2021, 35 (2), 130.
周千, 王瑞琪, 林兵, 等.重庆理工大学学报(自然科学), 2021, 35(2), 130.
[1] 廖家蔚, 刘红宇, 谢凯欣, 沈慧玲, 刘佳乐, 郑兴农. 四氧化三铁磁性药物载体的研究进展[J]. 材料导报, 2022, 36(Z1): 22040052-7.
[2] 杨惠舒, 李乐, 刘馨谣, 汤凯璇, 乔利. 介孔二氧化硅纳米颗粒作为药物载体的研究现状[J]. 材料导报, 2022, 36(Z1): 21110245-6.
[3] 宋晓东, 陶平均. 分子动力学模拟晶向对B2-CuZr纳米晶/Cu50Zr50非晶复合材料塑性变形行为的影响[J]. 材料导报, 2022, 36(Z1): 22030197-6.
[4] 余明先, 张景贤. 造孔剂法制备硅藻土基多孔陶瓷及其性能研究[J]. 材料导报, 2022, 36(Z1): 21070121-5.
[5] 吴青山, 赵鹏程, 刘志启, 周自圆, 李娜, 莫云泽. 镁铝水滑石的制备与应用研究[J]. 材料导报, 2022, 36(Z1): 22030128-8.
[6] 张雷, 李姗姗, 庄毅, 唐毓婧, 罗欣. 碳纤维与玻-碳层间混杂2.5维机织复合材料的力学性能对比研究[J]. 材料导报, 2022, 36(Z1): 21100025-5.
[7] 张娜, 周健. 高温处理后玄武岩纤维水泥基复合材料应变率效应研究[J]. 材料导报, 2022, 36(Z1): 20040024-5.
[8] 殷卫峰, 曾耀德, 杨中强, 张记明, 刘锐, 霍翠, 颜善银. 液晶高分子聚合物的类型、加工、应用综述[J]. 材料导报, 2022, 36(Z1): 21100214-5.
[9] 李辉, 朱刚, 张建卫, 康昆勇, 杜官本, 李园园, 孙呵. 二维MXene负载纳米金属及其氧化物构筑新型复合材料的研究进展[J]. 材料导报, 2022, 36(9): 20090029-9.
[10] 焦宇鸿, 朱建锋, 王芬. SiC/Al基复合材料界面调控[J]. 材料导报, 2022, 36(9): 20070174-13.
[11] 姬旭敏, 孙滨洲, 李聪, 胡澎浩. 利用多层薄膜技术提升聚合物基复合材料介电储能密度的研究进展[J]. 材料导报, 2022, 36(9): 20080247-7.
[12] 张文健, 郑浩, 李博文, 宋国君, 马丽春. 超支化磷腈衍生物修饰GO及其环氧复合材料的力学性能研究[J]. 材料导报, 2022, 36(8): 20110164-4.
[13] 张仲, 吕晓仁, 于鹤龙, 徐滨士. 智能自修复材料研究进展[J]. 材料导报, 2022, 36(7): 20110101-8.
[14] 李兴建, 侯晴, 杨继龙, 范宇飞, 崔秋月, 徐守芳. 电刺激响应形状记忆聚合物复合材料的设计和驱动性能[J]. 材料导报, 2022, 36(6): 20070243-12.
[15] 吴涛, 姚卫星, 黄杰. 纤维增强树脂基复合材料超高周疲劳研究进展[J]. 材料导报, 2022, 36(6): 20050117-9.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed