Please wait a minute...
材料导报  2022, Vol. 36 Issue (11): 20080149-8    https://doi.org/10.11896/cldb.20080149
  高分子与聚合物基复合材料 |
肽类树状大分子的功能化修饰及在肿瘤治疗和诊断中的应用综述
王朋飞, 徐胜楠, 魏杰, 刘文娟, 顾忠伟, 张亚男
南京工业大学材料科学与工程学院,南京 211816
Functionalization of Peptide Dendrimers and Its Application in Tumor Treatment and Diagnosis: a Review
WANG Pengfei, XU Shengnan, WEI Jie, LIU Wenjuan, GU Zhongwei, ZHANG Yanan
School of Materials Science and Engineering, Nanjing University of Technology, Nanjing 211816, China
下载:  全 文 ( PDF ) ( 4231KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 肽类树状大分子是一类具有高度规整性、三维结构、尺寸可控的大分子。其由于良好的生物相容性、低免疫原性和多功能化等特点,近几十年来逐渐发展成一类新型生物医用高分子材料。
目前,基于肽类树状大分子的药物递送系统,在药物/基因负载、靶向递送及释放等方面取得了突破性进展。抗癌药物/基因可通过物理包埋或环境敏感型化学键与肽类树状大分子结合,进而通过高渗透长滞留效应(EPR效应)或借助靶向因子实现向肿瘤部位的有效递送,最后通过载体溶胀或敏感型化学键的断裂实现药物释放。为达到更有效的抗肿瘤治疗效果,设计更加稳定、精准及具有诊疗一体或联合治疗功能的肽类树状大分子药物递送系统是目前研究的热点和难点。
本文简单介绍了近几年来肽类树状大分子表面功能化的研究进展,以及肽类树状大分子药物载体在治疗和诊断领域的应用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王朋飞
徐胜楠
魏杰
刘文娟
顾忠伟
张亚男
关键词:  肽类树状大分子  功能化  药物靶向递送  癌症治疗  癌症诊断    
Abstract: Peptide dendrimers are a three-dimensional nano-sized high-regularity macromolecule with tunable size. In recent years, due to their nume-rous advantages such as biocompatibility, low immunogenicity, multiple functional groups at the periphery and so on, peptide dendrimers have become a novel biomedical polymer material.
Breakthroughs have been made in drug/gene loading, targeted delivery and release by developing great peptide dendrimer-based nanotherapeutics. Anticancer drugs/genes can be either encapsulated in or conjugated to dendrimer and be delivered to the tumor via enhanced permeabi-lity and retention effect (EPR) or with the help of the targeting moiety. Finally, the drugs can be released by the drug delivery systems with more stable and precise therapeutic effect has been extensively studied, while it still remains a challenging issue. In order to achieve more effective antitumor treatment effect, design the more stable, accurate and peptide dendrimer drug delivery system with integrated or combined diagnosis and treatment function is a current research hotspot and difficulty.
In this paper, a brief introduction of surface functionalization progress of peptide dendrimers is presented. Then, their promising application in therapeutic and diagnostic fields as drug carrier is summarized.
Key words:  peptide dendrimer    functionalization    drug targeted delivery    cancer therapy    cancer diagnosis
发布日期:  2022-06-09
ZTFLH:  R318.08  
基金资助: 江苏省自然科学基金(BK20180698;BK20180495)
通讯作者:  zyn3648@njtech.edu.cn   
作者简介:  王朋飞,现为南京工业大学材料科学与工程学院研究生,在张亚男老师的指导下进行研究。目前主要研究领域为生物材料。
张亚男,2007年9月至2011年7月,于山东第一医科大学放射学院获得学士学位;2011年9月至2017年4月,于南京航空航天大学获得博士学位;2014年9月至2016年9月,以访问学者的身份在佐治亚大学学习。现为南京工业大学副教授,硕士研究生导师,主要研究方向为生物材料、高性能轻质防护复合材料及聚合物改性粘接复合材料。
引用本文:    
王朋飞, 徐胜楠, 魏杰, 刘文娟, 顾忠伟, 张亚男. 肽类树状大分子的功能化修饰及在肿瘤治疗和诊断中的应用综述[J]. 材料导报, 2022, 36(11): 20080149-8.
WANG Pengfei, XU Shengnan, WEI Jie, LIU Wenjuan, GU Zhongwei, ZHANG Yanan. Functionalization of Peptide Dendrimers and Its Application in Tumor Treatment and Diagnosis: a Review. Materials Reports, 2022, 36(11): 20080149-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20080149  或          http://www.mater-rep.com/CN/Y2022/V36/I11/20080149
1 Sadler K, Tam J P. Reviews in Molecular Biotechnology, 2002, 90(3), 195.
2 Crespo L, Sanclimens G, Pons M, et al. Chemical Reviews, 2005, 105(5), 1663.
3 Huang D, Wu D. Materials Science and Engineering: C, 2018, 90, 713.
4 Ryan G M, Kaminskas L M, Bulitta J B, et al. Journal of Controlled Release, 2013, 172(1), 128.
5 Byrne M, Victory D, Hibbitts A, et al. Biomaterials Science, 2013, 1(12), 1223.
6 Cheng Y, Gao Y, Rao T, et al. Combinatorial Chemistry & High Throughput Screening, 2007, 10(5), 336.
7 Torchilin, Vladimir P. Advanced Drug Delivery Reviews, 2012, 64, 302.
8 Aulenta F, Hayes W, Rannard S. European Polymer Journal, 2003, 39(9), 1741.
9 Zhang X Q, Xu X Y, Lam R, et al. ACS Nano, 2011, 5(9), 6962.
10 Boas U, Peter M H, et al. Chemical Society Reviews, 2004, 1(33), 43.
11 Li Y, Cheng Y, Xu T. Current Drug Discovery Technologies, 2007, 4(4), 246.
12 Najlah M, Freeman S, Attwood D, et al. International Journal of Pharmaceutics, 2007, 336(1), 183.
13 Torchilin V. Advanced Drug Delivery Review, 2011, 63(3), 131.
14 Maruyama K. Advanced Drug Delivery Reviews, 2011, 63(3), 161.
15 Madaan K, Kumar S, Poonia N, et al. Journal of Pharmacy & Bioallied Sciences, 2014, 6(3), 139.
16 Kesharwani P, Lyer A K. Drug Discovery Today, 2015, 20(5), 536.
17 Zhang C, Pan D, Luo K, et al. Advanced Healthcare Materials, 2014, 3(8), 1299.
18 Okuda T, Kawakami S, Akimoto N, et al. Journal of Controlled Release, 2006, 116(3), 330.
19 Mehta D, Leong N, Mcleod V M, et al. Molecular Pharmaceutics, 2018, 15(10), 4568.
20 Wang F, Cai X, Su Y, et al. Acta Biomaterialia, 2012, 8(12), 4304.
21 Lee H, Baker J R, Larson R G. Journal of Physical Chemistry B, 2006, 110(9), 4014.
22 Ghaffari M, Dehghan G, Abedi-Gaballu F, et al. European Journal of Pharmaceutical Sciences, 2018, 122, 311.
23 Gorzkiewicz M, Konopka M, Janaszewska A, et al. Bioorganic Chemistry, 2020, 95, 103504.
24 Ziemba B, Janaszewska A, Ciepluch K, et al. Journal of Biomedical Materials Research Part A, 2011, 99A(2), 261.
25 Chen Q, Wang H, Liu H, et al. Analytical Chemistry, 2015, 87(7), 3949.
26 Li Y, Han S, Oyu T, et al. Sen-I Gakkaishi, 2015, 71(1), 10.
27 She W, Li N, Luo K, et al. Biomaterials, 2013, 34(9), 2252.
28 Agrawal P, Gupta U, Jain N K. Biomaterials, 2007, 28(22), 3349.
29 Niederhafner P, Reinis M, Sebestik J, et al. Journal of Peptide Science, 2008, 14(5), 556.
30 Fan Y, Sun W, Shi X. Small Methods, 2017, 1(12), 1700224.
31 Qiao Z, Shi X. Progress in Polymer Science, 2015, 44, 1.
32 She W C, Luo K, He B, et al. Macromolecular Journal, 2011(2), 157 (in Chinese).
佘汶川, 罗奎, 何斌, 等.高分子学报, 2011(2), 157.
33 Sun Q, Sun X, Ma X, et al. Advanced Materials, 2014, 26(45), 7615.
34 Li N, Cai H, Jiang L, et al. ACS Applied Materials & Interfaces, 2017, 9(8), 6865.
35 Zhang X, Li Y, Hu C, et al. ACS Applied Materials & Interfaces, 2018, 10(37), 30952.
36 Ma J, Kang K, Zhang Y, et al. ACS Applied Materials & Interfaces, 2018, 10(50), 43923.
37 Yuan H, Luo K, Lai Y, et al. Molecular Pharmaceutics, 2010, 7(4), 953.
38 Ma W, Fu F, Zhu J, et al. Nanoscale, 2018, 10(13), 6113.
39 Wang M, Li J, Li X, et al. Journal of Controlled Release, 2016, 232, 161.
40 Shen J, Li X, Fan L, et al. International Journal of Nanomedicine, 2017, 12, 1183.
41 Cheng Y, Ji Y. European Journal of Pharmaceutical Sciences, 2019, 128, 8.
42 Hu C, Yang X, Liu R, et al. ACS Applied Materials & Interfaces, 2018, 10(26), 22571.
43 Li Y, Zhang H, Xin L. Journal of Cancer Research and Clinical Oncology, 2018, 144(8), 1463.
44 Han M, Huang-Fu M Y, Guo W W, et al. ACS Applied Materials & Interfaces, 2017, 9(49), 42459.
45 Hu Q, Wang Y, Xu L, et al. International Journal of Nanomedicine, 2020, 15, 2751.
46 Chauhan V P, Jain R K. Nature Materials, 2013, 12(11), 958.
47 Du X, Wang J, Liu W, et al. Biomaterials, 2015, 69, 1.
48 Guo X, Wei X, Jing Y, et al. Advanced Materials, 2015, 27(41), 6450.
49 Xue X, Jin S, Zhang C, et al. ACS Nano, 2015, 9(3), 2729.
50 Aillon K L, Xie Y, El-Gendy N, et al. Advanced Drug Delivery Reviews, 2009, 61(6), 457.
51 Gu Z W, Luo K, She W C, et al. Science in China: Chemistry, 2010, 40(3), 210 (in Chinese).
顾忠伟, 罗奎, 佘汶川, 等.中国科学:化学, 2010, 40(3), 210.
52 He X, Alves C S, Oliveira N, et al. Colloids and Surfaces B-Biointerfa-ces, 2015, 125, 82.
53 Jain K, Gupta U, Jain N K. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 87(3), 500.
54 Zhong D, Tu Z, Zhang X, et al. Biomacromolecules, 2017, 18(11), 3498.
55 Li H, Jing F, Hao J. Journal of Applied Polymer Science, 2020, 137(43), 49339.
56 Zhong D, Wu H, Wu Y, et al. Nanoscale, 2019, 11(32), 15091.
57 Zhang C, Pan D, Li J, et al. Acta Biomaterialia, 2017, 55, 153.
58 Wu Y, Zhong D, Li Y, et al. Advanced Healthcare Materials, 2020, 7(9), 19017397.
59 Cai H, Dai X H, Wang X M, et al. Advanced Science, 2020, 7(6), 1903243.
60 Luo L, Xu F, Peng H, et al. Journal of Controlled Release, 2020, 318, 124.
61 Yoshida T, Lai T C, Kwon G S, et al. Expert Opinion on Drug Delivery, 2013, 10(11), 1497.
62 She W, Luo K, Zhang C, et al. Biomaterials, 2013, 34(5), 1613.
63 Zhu J, Wang G, Alves C S, et al. Langmuir, 2018, 34(41), 12428.
64 Zhu J, Lei Q, Yang B, et al. Biomaterials, 2015, 52, 281.
65 Wu S, Zheng L, Li C, et al. Journal of Polymer Science Part A-Polymer Chemistry, 2017, 55(12), 2036.
66 Mao W, Kim H S, Son Y J, et al. Journal of Controlled Release, 2018, 269, 52.
67 Huang M, Zhang S, Lu S, et al. Journal of Biomedical Materials Research Part A, 2019, 107(8), 1824.
68 Kaneshiro T L, Lu Z. Biomaterials, 2009, 30(29), 5660.
69 Liu F, Hou C, Zhang D, et al. Biomaterials Science, 2018, 6(3), 604.
70 Sun T, Jin Y, Qi R, et al. Polymer Chemistry, 2013, 4(14), 4017.
71 Jin Q, Wang Y, Cai T, et al. Polymer, 2014, 55(18), 4641.
72 Hu X, Tian J, Liu T, et al. Macromolecules, 2013, 46(15), 6243.
73 Liu H, Zhang R, Niu Y, et al. RSC Advances, 2015, 5(27), 20848.
74 Jochum F D, Theato P. Chemical Communications, 2010, 46(36), 6717.
75 Luo K, Li C, Wang G, et al. Journal of Controlled Release:Official Journal of the Controlled Release Society, 2011, 155(1), 77.
76 Rolland A P. Critical Reviews in Therapeutic Drug Carrier Systems, 1998, 15(2), 143.
77 Zhang Z Y, Smith B D. Bioconjugate Chemistry, 2000, 11(6), 805.
78 Dufes C, Uchegbu I F, Schätzlein A G. Advanced Drug Delivery Reviews, 2005, 57(15), 2177.
79 Ma D, Lin Q, Zhang L, et al. Biomaterials, 2014, 35(14), 4357.
80 Xu X, Jian Y, Li Y, et al. ACS Nano, 2014, 8(9), 9255.
81 Cai X, Jin R, Wang J, et al. ACS Applied Materials & Interfaces, 2016, 8(9), 5821.
82 Kala S, Mak A S C, Liu X, et al. Journal of Medicinal Chemistry, 2014, 57(6), 2634.
83 Jiang L, Ding Y, Xue X, et al. Nano Research, 2018, 11(11), 6062.
84 Wu L, Cai X, Zhu H, et al. Advanced Functional Materials, 2018, 28(41), 1804324.
85 Nigam S, Bahadur D. Colloids and Surfaces B-Biointerfaces, 2017, 155, 182.
86 Eid M, De Cecco C N, Nance J W, et al. American Journal of Roentge-nology, 2017, 209(2), 370.
87 Fu Y, Nitecki D E, Maltby D, et al. Bioconjugate Chemistry, 2006, 17(4), 1043.
[1] 魏宁, 铁生年. 功能化碳纳米纤维增强芒硝基相变储能材料的热性能[J]. 材料导报, 2022, 36(6): 21050177-7.
[2] 吴雪莲, 杨建, 屈阳, 王秀敏. 形状记忆聚合物智能材料在生物医学领域的应用[J]. 材料导报, 2021, 35(z2): 492-500.
[3] 詹宁宁, 张丽锋, 赵新星, 秦立娟, 滕厚开. 超支化聚合物的合成及应用[J]. 材料导报, 2021, 35(z2): 616-626.
[4] 邬欣, 曾利胜, 王剑龙, 李建. 无机纳米颗粒在癌症治疗中的研究进展[J]. 材料导报, 2021, 35(Z1): 87-93.
[5] 吕博, 陈连喜. 磷酸基功能化二氧化硅材料的制备、性能和应用[J]. 材料导报, 2021, 35(Z1): 143-150.
[6] 金琳, 杨永珍, 樊建锋, 许并社. 碳微球表面功能化对镁基复合材料的增强作用[J]. 材料导报, 2021, 35(8): 8093-8098.
[7] 夏容绮, 刘毅, 郭洪武. 透光性木材功能化改性研究进展[J]. 材料导报, 2021, 35(5): 5188-5194.
[8] 徐群娜, 白忠薛, 马建中. 玉米醇溶蛋白的化学改性及应用研究进展[J]. 材料导报, 2021, 35(3): 3194-3203.
[9] 张亚琼, 林兴安, 潘齐超, 钱思昊, 张述华, 邱高, 朱波. 图案化与生物功能化聚3,4-乙烯二氧噻吩生物界面[J]. 材料导报, 2021, 35(20): 20183-20189.
[10] 赵笙良, 刘飞燕, 陈丽琼. 金纳米材料光学传感快速检测方法研究要点初探[J]. 材料导报, 2021, 35(19): 19099-19115.
[11] 张关印, 关清卿, 庙荣荣, 宁平, 何亮. 共价有机骨架材料的合成及应用[J]. 材料导报, 2021, 35(13): 13215-13226.
[12] 申欣, 孟昭旭, 廉鹤. 纳米羟基磷灰石复合材料在癌症治疗中的应用进展[J]. 材料导报, 2020, 34(Z2): 88-90.
[13] 肖江, 周书葵, 刘星, 储陆平, 张建, 李智东, 田林玉, 李嘉丽. 层状双金属氢氧化物及其复合材料去除水体中重金属离子的研究进展[J]. 材料导报, 2020, 34(5): 5023-5031.
[14] 王学凯, 王金淑, 杜玉成, 吴俊书, 腾威利, 车海冰, 靳翠鑫. 硅藻土功能化及其应用[J]. 材料导报, 2020, 34(3): 3017-3027.
[15] 武伟, 董季玲, 张锦山, 范海兵, 尹坚, 刘洋, 丁皓, 曹鹏军. 功能化磁性纳米颗粒吸附废水中重金属的研究进展[J]. 材料导报, 2020, 34(17): 17124-17131.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed