Please wait a minute...
材料导报  2020, Vol. 34 Issue (10): 10046-10051    https://doi.org/10.11896/cldb.19060173
  无机非金属及其复合材料 |
锂渣粉的组成及在水泥浆体中的物理与化学反应特性
李保亮, 尤南乔, 曹瑞林, 霍彬彬, 陈春, 张亚梅
东南大学材料科学与工程学院,江苏省土木工程材料重点实验室,南京 211189
Composition of Lithium Slag Powder and Its Physical and Chemical Reaction Characteristics in Cement Paste
LI Baoliang, YOU Nanqiao, CAO Ruilin, HUO Binbin, CHEN Chun, ZHANG Yamei
Jiangsu Key Laboratory of Construction Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
下载:  全 文 ( PDF ) ( 4767KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用XRF、ICP、XRD、TG/DTG、FTIR、SEM-EDS和氮气吸附等手段,分析了典型锂渣粉的组成及锂渣粉在水泥浆体中的物理与化学反应特性。结果表明:锂渣中含有层块状锂辉石、棒状石膏、多孔状硅藻土、球形锂辉石与饼状碳酸钙等;锂渣属于多孔材料,其孔主要为2~50 nm的中孔,主要由锂辉石、炭黑、硅藻土等引起;锂渣的BET比表面积为P·II52.5水泥的5倍,总孔体积为水泥的4倍,但平均孔径小于水泥;锂辉石、石膏、硅藻土与炭黑等的存在是导致锂渣含水率较高的主要原因;此外,锂渣混凝土需水量大,还与石膏、硫酸钠、碳酸钠和碳酸锂等可与水泥中的铝酸盐矿物反应形成较多钙矾石等有关。锂渣属于酸性渣,掺加到水泥中会降低水泥浆体的碱度;锂渣中影响水泥水化的元素主要为S、Ca、Si、Al和K等,而Li的影响较小;锂渣具有较高活性,不仅与其中的石膏有关,还与硫酸钠、碳酸钠和碳酸锂有关。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李保亮
尤南乔
曹瑞林
霍彬彬
陈春
张亚梅
关键词:  锂渣粉  组成  水泥浆体  形貌    特性    
Abstract: Composition of lithium slag (LS) powder and its physical and chemical reaction characteristics in cement paste were analyzed by means of XRF, ICP, XRD, TG/DTG, FTIR, SEM-EDS, nitrogen adsorption, etc. The SEM results showed that LS contained layered leached spodumene, rod-like gypsum, porous diatomite, spherical leached spodumene and disk-shaped calcium carbonate. Moreover, LS was a porous material, whose pores were mainly mesopores of 2—50 nm, caused by layered leached spodumene, carbon black, porous diatomite, etc. The speci-fic surface area from BET test and total pore volume in LS were 5 times and 4 times of P·II 52.5 cement respectively, but the average pore size was smaller than that of cement. Layered leached spodumene, gypsum as well as porous diatomite and carbon black were the main sources of high water content of LS. In addition, the large water demand of LS blended concrete was also related to the fact that gypsum, sodium sulfate, sodium carbonate and lithium carbonate can react with aluminate mineral in cement to form more ettringite, etc. LS is an acid slag which can reduce the alkalinity of cement paste mixed with LS. The main elements in LS affecting cement hydration are S, Ca, Si, Al, K, etc., while the influence of Li can be neglected. In addition to gypsum, the reason why LS has relatively high activity is also related to sodium sulfate, sodium carbonate and lithium carbonate in LS.
Key words:  lithium slag    composition    cement paste    morphology    pore    property
                    发布日期:  2020-04-26
ZTFLH:  TU528  
基金资助: 中日政府间科技合作项目(2016YFE0118200);国家自然科学基金(51778132);国家973项目(2015CB655100)
通讯作者:  张亚梅,东南大学结构工程专业博士,东南大学材料科学与工程学院教授、博士研究生导师、副院长,江苏省先进土木工程材料协同创新中心副主任,2015年东南大学“十佳导师”。1990年毕业于东南大学土木系获学士学位,1998年毕业于东南大学材料系获博士学位。曾任江苏省土木工程材料重点实验室常务副主任。现为ACI CC(美国混凝土学会中国分会)理事,SAC(中国国家标准化委员会)注册ISO TC71专家,中国混凝土与水泥制品协会固废分会建筑固废专委会主任委员,中国土木工程学会再生混凝土分会副主任委员,中国硅酸盐学会水泥化学分会委员,中国混凝土与水泥制品协会预制混凝土构件分会理事,fib(The International Federation for Structural Concrete) TG3.10委员,fib com.9 委员;Cement and Concrete Compo-site编委,Structural Materials (of Frontiers in Built Environment and Mate-rials)编委。日本可持续发展协会客座研究员。负责或参与国家自然科学基金项目、973项目子题、重大工程技术攻关项目及企业合作项目等40多项;曾获教育部科技进步二等奖、华夏建设科技一等奖等。研究方向:固体废弃物的资源化利用技术,碱激发胶凝材料,建筑节能新材料,高性能纤维增强水泥基复合材料等。ymzhang@seu.edu.cn   
作者简介:  李保亮,2011年硕士毕业于济南大学材料科学与工程专业,2015年9月开始师从东南大学张亚梅教授,攻读博士研究生,主要研究方向为镍渣基、锂渣基复合胶凝材料。
引用本文:    
李保亮, 尤南乔, 曹瑞林, 霍彬彬, 陈春, 张亚梅. 锂渣粉的组成及在水泥浆体中的物理与化学反应特性[J]. 材料导报, 2020, 34(10): 10046-10051.
LI Baoliang, YOU Nanqiao, CAO Ruilin, HUO Binbin, CHEN Chun, ZHANG Yamei. Composition of Lithium Slag Powder and Its Physical and Chemical Reaction Characteristics in Cement Paste. Materials Reports, 2020, 34(10): 10046-10051.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19060173  或          http://www.mater-rep.com/CN/Y2020/V34/I10/10046
1 Li B L, You N Q, Zhu G R, et al. Materials Reports B: Research Papers,2019,33(12),4072(in Chinese).
李保亮, 尤南乔, 朱国瑞, 等.材料导报:研究篇,2019,33(12),4072.
2 He Z H, Li L Y, Du S G. Construction and Building Materials, 2017, 147,296.
3 Luo Q, Huang S W, Zhou Y X, et al.IOP Conference Series: Earth and Environmental Science, 2017,61(1),012151.
4 Yang C Y. Metallurgy of light metals, Metallurgical Industry Press, China, 2017(in Chinese).
杨重愚. 轻金属金属学, 冶金工业出版社, 2017.
5 Zhang L F.Journal of Liaoning Technical University, 2007, 26(6),877(in Chinese).
张兰芳.辽宁工程技术大学学报, 2007, 26(6),877.
6 Chen D, Hu X, Shi L, et al. Applied Clay Science, 2012, 59-60(5),148.
7 Tan H, Li X, He C, et al. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2015, 30(1),129.
8 Tan H, Zhang X, He X, et al.Journal of Cleaner Production, 2018, 205,536.
9 Li B, Cao R, You N, et al.Construction and Building Materials, 2019, 220,596.
10 Yan P Y, Han J G.Journal of Building Materials, 2004,7(2), 202(in Chinese).
阎培渝, 韩建国.建筑材料学报, 2004,7(2), 202.
11 Liu R J, Chen P. Ferro-alloys, 2009, 40(3),42(in Chinese).
刘荣进, 陈平.铁合金, 2009, 40(3),42.
12 Botto I L. Materials Chemistry and Physics, 1985, 13(5),423.
13 Chan S Y N, Ji X. Cement and Concrete Composites, 1999, 21(4), 293.
14 Han J G, Yan P Y.Journal of the Chinese Ceramic Society, 2010, 38(4),608(in Chinese)
韩建国, 阎培渝. 硅酸盐学报, 2010, 38(4),608.
15 Ismail I, Bernal S A, Provis J L, et al. Cement and Concrete Composites, 2014, 45,125.
16 Naskar M K, Chatterjee M. Materials Letters, 2005, 59(8),998.
17 Yijin L, Shiqiong Z, Jian Y, et al. In:Proceedings of the International Workshop on Sustainable Development and Concrete Technology.Beijing,2004.
18 Taylor H F W. Cement chemistry, Thomas Telford, London, 1997.
19 Qian T T. The preparation and characterization of a shape-stabilized composite phase change material of polyethylene glycol/diatomite with enhanced thermal performance. Ph.D. Thesis,China University of Geoscie-nces (Beijing), China, 2017(in Chinese).
钱婷婷. 硅藻土基定形复合相变储能材料的制备与性能研究.博士学位论文,中国地质大学(北京), 2017.
20 Ergün A.Construction and Building Materials, 2011, 25(2),806.
21 Yllmaz B, Ediz N.Cement and Concrete Composites, 2008, 30(3),202.
22 Degirmenci N, Yilmaz A. Construction and Building Materials, 2009, 23(1), 284.
23 Matschei T, Lothenbach B, Glasser F P. Cement and Concrete Research, 2007, 37(4),551.
24 Lothenbach B, Le Saout G, Gallucci E, et al.Cement and Concrete Research, 2008, 38(6), 848.
25 Thommes M, Kaneko K, Neimark A V, et al.Pure and Applied Chemistry, 2015, 87(9-10),1051.
26 Tseng R L, Wu F C, Juang R S.Carbon, 2003, 41(3),487.
27 Chen J, Lu D Y, Li K, et al.Journal of the Chinese Ceramic Society, 2017, 45(8),1121(in Chinese).
陈捷, 卢都友, 李款, 等.硅酸盐学报, 2017, 45(8),1121.
28 Mantellato S, Palacios M, Flatt R J.Cement and Concrete Research, 2015, 67,286.
[1] 马茸茸, 张电, 刘一军, 刘静, 杨晓凤, 李延军, 马爱琼. 多孔氮化硅陶瓷的研究进展及构效关系中的矛盾平衡[J]. 材料导报, 2020, 34(9): 9101-9109.
[2] 张勤玲, 黄志义. FTIR分峰拟合法定量分析沥青胶浆在含盐高温高湿环境中的结构变化[J]. 材料导报, 2020, 34(8): 8083-8089.
[3] 吴志昂, 郑晓平, 龚莉雯, 王璠, 杨子程, 张利, 包锦标. 发泡工艺及超临界二氧化碳诱导结晶作用对聚碳酸酯发泡行为的影响[J]. 材料导报, 2020, 34(8): 8200-8204.
[4] 盖海东, 冯春花, 董一娇, 赵倩, 李东旭. 纳米压痕技术应用于水泥基材料的研究进展[J]. 材料导报, 2020, 34(7): 7107-7114.
[5] 孙晓霞, 鲍艺, 彭黔荣, 陈亭羽, 卢小鸾, 杨敏. 角蛋白生物材料在创伤愈合中的应用研究进展[J]. 材料导报, 2020, 34(7): 7161-7167.
[6] 张浩, 朱永昌, 崔竹, 韩勖, 耿安东. 钾钠物质的量比对LAS光敏微晶玻璃介电性能的影响[J]. 材料导报, 2020, 34(6): 6020-6023.
[7] 戴俊, 钱春香, 陈竞, 庞忠华. 无水乙酸钠对磷酸钾镁水泥水化性能和微观形貌的影响[J]. 材料导报, 2020, 34(6): 6066-6074.
[8] 诸利一, 吕文生, 杨鹏, 王志凯, 王志军. 超声波对全尾砂砂浆流变特性的影响[J]. 材料导报, 2020, 34(6): 6088-6094.
[9] 孙宏宇, 高静怡, 潘超. 蒲公英基三维分级多孔炭的制备及电化学性能[J]. 材料导报, 2020, 34(4): 4007-4012.
[10] 孙肖坤, 孙孟勇, 刘小冲, 赵娟. 冷冻干燥法制备高气孔率、低介电的Si3N4陶瓷[J]. 材料导报, 2020, 34(4): 4025-4031.
[11] 王鑫, 仲崇贵, 李桦, 董正超. 超导薄膜FeSe和FeS0.5Se0.5的磁性与电子特性的研究[J]. 材料导报, 2020, 34(4): 4068-4072.
[12] 李卿, 赵国瑞, 马文有, 余红雅, 刘敏. 选区激光熔化成形多孔Ti6Al4V (ELI)合金的拉伸性能及断裂机制[J]. 材料导报, 2020, 34(4): 4073-4076.
[13] 秦翔, 杨军, 邹德宁, 谢燕翔. 选区激光熔化线能量对Inconel718涂层组织结构及性能的影响[J]. 材料导报, 2020, 34(4): 4093-4097.
[14] 张恒, 周玉惠, 张飞, 龚维, 何力. 聚丙烯/β-环糊精复合材料发泡性能及力学性能的研究[J]. 材料导报, 2020, 34(4): 4148-4152.
[15] 申嘉荣, 徐千军. 高温对混凝土孔隙结构改变和抗压强度降低作用的规律研究[J]. 材料导报, 2020, 34(2): 2046-2051.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed