Please wait a minute...
材料导报  2026, Vol. 40 Issue (1): 25010099-7    https://doi.org/10.11896/cldb.25010099
  金属与金属基复合材料 |
基于Oyane-Sato准则的GH4169合金高温断裂行为研究
易世凤, 陈小敏*
长沙理工大学机械与运载工程学院,长沙 410114
Prediction of High-temperature Tensile Fracture Behavior of GH4169 Alloy Based on the Oyane-Sato Criterion
YI Shifeng, CHEN Xiaomin*
College of Mechanical and Vehicle Engineering, Changsha University of Science and Technology, Changsha 410114, China
下载:  全 文 ( PDF ) ( 23301KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过不同的热处理方法获得了具有不同初始δ相含量的GH4169高温合金,利用光学显微镜(OM)和扫描电子显微镜(SEM)讨论了时效工艺对合金微观组织的影响规律。结果表明:随着时效时间的延长,合金中的δ相形态发生了显著变化,δ相从晶界向晶内扩展,并由短棒状转变为长针状。通过对不同初始组织的GH4169合金进行高温拉伸实验,发现合金的伸长率表现出先增加后减少的趋势,而抗拉强度和屈服强度逐渐升高。其中,时效9 h的GH4169表现出最高的抗拉强度和相对较好的断裂延伸率。进一步,针对时效9 h的合金在920~1 010 ℃及应变速率为0.001~0.01 s-1条件下进行了高温拉伸试验,并深入研究了其高温损伤行为。在相同的条件下,应变速率越快,材料的屈服强度越高,而温度越高,材料的屈服强度越低。基于Oyane-Sato损伤准则,构建了合金的高温损伤模型,损伤值的预测结果和实验结果具有较好的一致性,表明所建立的损伤模型能够准确预测GH4169合金的高温断裂损伤行为,研究结果可为优化镍基合金热成形工艺提供可靠的理论依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
易世凤
陈小敏
关键词:  GH4169合金  高温拉伸  损伤模型  Oyane-Sato准则    
Abstract: GH4169 superalloy with varying initial δ phases was obtained through different heat treatments, the influence of aging processes on the microstructure of the alloy was investigated using optical microscopy (OM) and scanning electron microscopy (SEM). Results show that as the aging time extends, the morphology of δ phase in the alloy changes significantly, extending from grain boundaries into the grain interior and transforming from a short rod shape to a long needle shape. High-temperature tensile tests were conducted on GH4169 alloys with different initial microstructures, the elongation of the alloy exhibits a trend of increasing first and then decreasing, while the ultimate tensile strength and yield strength gradually increase. Among them, GH4169 aged for 9 hours demonstrates the highest ultimate tensile strength and a relatively good fracture elongation. Furthermore, high-temperature tensile tests were conducted on the alloy aged for 9 hours under conditions of 920 ℃ to 1 010 ℃ and strain rates of 0.001 s-1 to 0.01 s-1, with an in-depth investigation of its high-temperature damage behavior. Under the same conditions, the higher the strain rate, the higher the yield strength of the material, while the higher the temperature, the lower the yield strength. Based on the Oyane-Sato damage criterion, a high-temperature damage model of the alloy was constructed, and the predicted damage values are in good agreement with the experimental results, indicating that the established damage model can accurately predict the high-temperature fracture da-mage behavior of GH4169 alloy. The research findings provide a reliable theoretical basis for optimizing the hot forming process of nickel-based alloys.
Key words:  GH4169 alloy    high-temperature tensile    damage model    Oyane-Sato criterion
出版日期:  2026-01-10      发布日期:  2026-01-09
ZTFLH:  TG132  
基金资助: 国家自然科学基金(52475148)
通讯作者:  * 陈小敏,长沙理工大学机械与运载工程学院副教授、硕士研究生导师,主要研究方向为镍基合金和稀土镁合金的疲劳断裂行为。chenxm0616@csust.edu.cn   
作者简介:  易世凤,现为长沙理工大学机械与运载工程学院硕士研究生,在陈小敏副教授的指导下进行研究。目前主要研究领域为镍基高温合金的断裂机理研究。
引用本文:    
易世凤, 陈小敏. 基于Oyane-Sato准则的GH4169合金高温断裂行为研究[J]. 材料导报, 2026, 40(1): 25010099-7.
YI Shifeng, CHEN Xiaomin. Prediction of High-temperature Tensile Fracture Behavior of GH4169 Alloy Based on the Oyane-Sato Criterion. Materials Reports, 2026, 40(1): 25010099-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.25010099  或          https://www.mater-rep.com/CN/Y2026/V40/I1/25010099
1 Xu Z, Liu S, Zhu Y, et al. Journal of Materials Science & Technology, 2025, 211, 145.
2 Wang H, Xu W, Lu H. Chinese Journal of Aeronautics, 2023, 36(6), 378.
3 Su Y, Li W, Shen J, et al. Materials Science and Engineering: A, 2022, 859, 144227.
4 Gurson A L. Journal of Engineering Materials and Technology, 1977, 99(1), 2.
5 Malcher L, Mamiya E N. International Journal of Plasticity, 2014, 56, 232.
6 Zheng L, Wang Z, Meng B, et al. International Journal of Plasticity, 2023, 164, 103572.
7 Rice J R, Tracey D M. Journal of the Mechanics and Physics of Solids, 1969, 17(3), 201.
8 Bai Y, Wierzbicki T. International Journal of Fracture, 2010, 161(1), 1.
9 Lou Y, Yoon J W, Huh H. International Journal of Plasticity, 2014, 54, 56.
10 Lou Y, Huh H, Lim S, et al. International Journal of Solids and Structures, 2012, 49(25), 3605.
11 Valoppi B, Bruschi S, Ghiotti A, et al. International Journal of Mechanical Sciences, 2017, 123, 94.
12 Zhang X C, Li H C, Zeng X, et al. Materials Science and Engineering: A, 2017, 682, 12.
13 Tao T C, Zang K, Zhu Z Y. Heat Treatment of Metals, 2024, 49(4), 83(in Chinese).
陶天成, 臧凯, 朱治愿. 金属热处理, 2024, 49(4), 83.
14 Zhang H, Li C, Liu Y, et al. Journal of Alloys and Compounds, 2017, 716, 65.
15 Zhao S, Li X Y, Rong L J. Acta Metallurgica Sinica, 2011, 47(8), 1017(in Chinese).
赵帅, 李秀艳, 戎利建. 金属学报, 2011, 47(8), 1017.
16 Anderson M, Thielin A L, Bridier F, et al. Materials Science and Engineering: A, 2017, 679, 48.
17 Wang X W. Study on high temperature damage criterion of 30CrMo steel in hot working process. Master's Thesis, Yanshan University, China, 2021 (in Chinese).
王晓伟. 30CrMo钢热加工过程中高温损伤判据的研究. 硕士学位论文, 燕山大学, 2021.
18 Zhang H Y, Zhang S H, Cheng M, et al. Transactions of Materials and Heat Treatment. 2017, 38(3), 70(in Chinese).
张海燕, 张士宏, 程明, 等. 材料热处理学报, 2017, 38(3), 70.
19 Páramo-Kañetas P, Özturk U, Calvo J, et al. Journal of Materials Processing Technology, 2018, 255, 204.
20 Jiang W, Lu J, Guan H, et al. Materials & Design, 2023, 226, 111693.
21 Marrow T J, Babout L, Jivkov A P, et al. In: Fracture of nano and engineering materials and structures, Greece, 2006, pp.897.
22 Guo Q M, Li D F, Peng H J, et al. Journal of University of Science and Technology Beijing, 2011, 33(5), 587(in Chinese).
郭青苗, 李德富, 彭海健, 等. 北京科技大学学报, 2011, 33(5), 587.
23 Zhang H Y, Zhang S H, Cheng M, et al. Chinese Journal of Materials Research, 2014, 28(3), 211(in Chinese).
张海燕, 张士宏, 程明, 等. 材料研究学报, 2014, 28(3), 211.
24 Li T, Li H, Li R, et al. Journal of Materials Processing Technology, 2020, 283, 116713.
25 Oyane M, Sato T, Okimoto K, et al. Journal of Mechanical Working Technology, 1980, 4(1), 65.
26 Dai Q, Deng Y, Jiang H, et al. Materials Science and Engineering: A, 2019, 766, 138325.
27 Yang X, Zhang Z, Meng M, et al. Journal of Materials Research and Technology-Jmr&T, 2022, 18, 255.
28 Jiang Y Q, Lin Y C, Jiang X Y, et al. Materials Characterization, 2020, 163, 110272.
29 Bhattacharya S S, Satishnarayana G V, Padmanabhan K A. Journal of Materials Science, 1995, 30(23), 5850.
[1] 蒋曜年, 刘欢, 钟镇涛, 何泽乾, 毛卫国, 戴翠英, 张有为, 刘平桂. SiCN@Fe复合吸波涂层高温原位拉伸测试分析[J]. 材料导报, 2025, 39(3): 23050156-5.
[2] 贾向东, 罗展, 镐昆明, 张洪耀, 陆伟. 基于响应面法和MOPSO算法的2195-T6铝锂合金GTN损伤模型[J]. 材料导报, 2025, 39(23): 24120146-8.
[3] 王剑烨, 李肖, 彭丽云, 王冬勇. EICP加固砂土的强度及应力-应变关系研究[J]. 材料导报, 2025, 39(11): 24070113-9.
[4] 凡涛涛, 韩松凯, 司春棣. 紫外老化对硫酸钙晶须改性沥青疲劳性能的影响[J]. 材料导报, 2025, 39(11): 24040015-6.
[5] 梁艳玲, 霍润科, 宋战平, 穆彦虎, 秋添, 宋子羿. 基于矿物溶解理论的砂岩化学损伤动态模型[J]. 材料导报, 2024, 38(8): 22080206-7.
[6] 卢慧扬, 林金保, 刘惠民, 王炳权, 李一豪, 陈巽. 镁合金轧制边裂损伤模型的研究进展[J]. 材料导报, 2024, 38(24): 23110051-8.
[7] 刘亚敏, 韩旭晖, 高晨光, 钟国亮. 全程老化沥青中温抗疲劳性能及预测模型研究[J]. 材料导报, 2024, 38(21): 23070147-6.
[8] 关虓, 龙行, 丁莎, 张鹏鑫. 煤矸石粉混凝土冻融损伤模型与劣化机制[J]. 材料导报, 2024, 38(16): 22080144-9.
[9] 董书琳, 曲迎东, 陈瑞润, 郭景杰, 王琪, 李广龙, 张伟, 于波. Ti-44Al-6Nb-2Fe合金低温超塑性及高温拉伸组织演化[J]. 材料导报, 2024, 38(1): 22090130-6.
[10] 吴伟喆, 刘阳, 张艺欣, 黄建山, 闫国威. 冻融环境下FRCC孔隙结构与力学性能研究综述[J]. 材料导报, 2023, 37(S1): 23010108-12.
[11] 梁波, 兰芳, 郑健龙. 沥青的老化机理与疲劳性能关系的研究进展[J]. 材料导报, 2021, 35(9): 9083-9096.
[12] 米俊龙, 贾涓, 宋新莉, 王凯, 徐庭栋. 变形条件对C-Mn钢力学性能的影响机理[J]. 材料导报, 2021, 35(22): 22146-22150.
[13] 尚明刚, 何忠茂, 乔宏霞, 冯琼, 苏富赟, 张璐. 基于恒电流密度的钢筋混凝土加速腐蚀试验研究[J]. 材料导报, 2020, 34(22): 22058-22064.
[14] 董方园,郑山锁,宋明辰,张艺欣,郑捷,秦卿. 高性能混凝土研究进展Ⅱ:耐久性能及寿命预测模型[J]. 《材料导报》期刊社, 2018, 32(3): 496-502.
[15] 洪凯, 吴林, 蒋伟, 吴继礼, 张博. Cu-Zr非晶合金薄带的高温拉伸蠕变研究[J]. 材料导报, 2018, 32(24): 4309-4313.
[1] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[2] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[3] ZHANG Libo, WANG Lu, QU Wenwen, XU Shengming, ZHANG Jialin. Research and Development of Petroleum Hydrodesulfurization Catalysts with Al2O3-based Supports[J]. Materials Reports, 2018, 32(5): 772 -779 .
[4] SHI Yu, GAO Haiming, LI Guang, LI Xiang. High Frequency Induction Brazing Process of Copper-Steel and Its Effects on Microstructure and Electrical Conductivity of Weld Joint[J]. Materials Reports, 2018, 32(6): 909 -914 .
[5] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang. First-principles Calculations of Electronic Structures and Elastic Properties of 14H-LPSO and W Phases in Mg-Zn-Y Alloy[J]. Materials Reports, 2018, 32(6): 1026 -1031 .
[6] . Grain Growth Kinetics of Rolled ZK61 Magnesium Alloy Sheet[J]. Materials Reports, 2017, 31(4): 60 -64 .
[7] REN Jingkun, LIU Weipeng, LI Zhanfeng, SUN Qinjun, WANG Hua, SHI Fang, HAO Yuying. Synthesis of a New Random Terpolymer Donor with an Application to Organic Solar Cells[J]. Materials Reports, 2017, 31(17): 133 -137 .
[8] WANG Yanfeng, ZHAO Xiaohua, LI Gengying. Influence of Dry/Wet State Variation on Piezoresistivity of Multi-walled Carbon Nanotube Reinforced Cement Mortar[J]. Materials Reports, 2017, 31(24): 20 -25 .
[9] HOU Dianxin, LU Yuan, LIU Zhiwei, HU Jie. Temperature Rising in VO2 Thin Films Under Irradiation of Mid-infrared Laser Based on External Heat Source[J]. Materials Reports, 2017, 31(24): 91 -95 .
[10] NIU Ditao, LU Yao, LIU Xiguang. A Review on Sulfuration Properties of Concrete[J]. Materials Reports, 2017, 31(23): 163 -170 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed