Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (3): 496-502    https://doi.org/10.11896/j.issn.1005-023X.2018.03.021
     材料综述 |
高性能混凝土研究进展Ⅱ:耐久性能及寿命预测模型
董方园1,郑山锁1,宋明辰1,张艺欣1,郑捷1,秦卿1,2
1 西安建筑科技大学土木工程学院,西安 710055
2 西安科技大学建筑与土木工程学院,西安 710054
Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model
Fangyuan DONG1,Shansuo ZHENG1,Mingchen SONG1,Yixin ZHANG1,Jie ZHENG1,Qing QIN1,2
1 School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an 710055;
2 Civil and Architecture Engineering, Xi’an University of Science and Technology, Xi’an 710054;
下载:  全 文 ( PDF ) ( 1097KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 

综述了高性能混凝土耐久性能方面的研究进展,包括高性能混凝土的抗氯离子渗透性能、抗冻融性能、抗碳化性能、抗盐侵蚀性能以及多种因素耦合作用下的耐久性能等,介绍了与高性能混凝土耐久性相关的损伤模型和寿命预测模型,并分析了高性能混凝土耐久性能研究现存的一些问题。分析发现:高性能混凝土的耐久性能受材料种类、掺量、实验条件等因素的影响,适量的矿物掺合料和外加剂能够减少混凝土内部有害孔的数量,增加结构的密实度,提高混凝土的耐久性能。多种因素耦合作用下的混凝土耐久性及损伤模型、寿命预测模型等更接近结构所处环境的实际情况,这将会成为高性能混凝土耐久性方面研究的一个热点。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
董方园
郑山锁
宋明辰
张艺欣
郑捷
秦卿
关键词:  高性能混凝土  耐久性  损伤模型  寿命预测    
Abstract: 

This paper reviewed the progress of research on durability of high performance concrete, including anti-chloride ion permeability, freeze-thaw resistance, carbonation resistance, salt corrosion resistance, and durability under the coupling of multiple factors of high performance concrete, discussed the damage model and life prediction model of high performance concrete, and analyzed the existing problems of research on durability of high performance concrete. Results demonstrated that the durability of high performance concrete is influenced by the type and amount of material, the experimental conditions, et al. The appropriate amount of mineral admixtures and additives can reduce the number of harmful holes in the concrete, increase the density and improve the durability of concrete. Besides, the study on durability, damage model and life prediction model of concrete under multi-factor coupling effect, is more close to the actual circumstances of the structure, and this will become a hot spot of durability of high performance concrete.

Key words:  high performance concrete    durability    damage model    service life prediction design
出版日期:  2018-02-10      发布日期:  2018-02-10
ZTFLH:  TU528  
基金资助: 国家科技支撑计划(2013BAJ08B03);国家自然科学基金(51678475);教育部高等学校博士学科点专项科研基金(20136120110003)
作者简介:  董方园:女,1992年生,硕士研究生,研究方向为高性能混凝土 E-mail: dongfangyuan2013@163.com|郑山锁:通信作者,男,1961年生,博士,教授,博士研究生导师,研究方向为结构工程与工程抗震 E-mail: zhengshansuo@263.net
引用本文:    
董方园,郑山锁,宋明辰,张艺欣,郑捷,秦卿. 高性能混凝土研究进展Ⅱ:耐久性能及寿命预测模型[J]. 《材料导报》期刊社, 2018, 32(3): 496-502.
Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model. Materials Reports, 2018, 32(3): 496-502.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.03.021  或          https://www.mater-rep.com/CN/Y2018/V32/I3/496
图1  粉煤灰掺量对氯离子渗透深度的影响[1]
图2  耐久性系数与水胶比的关系[16]
1 Yazici Halit . The effect of silica fume and high-volume Class C fly ash on mechanical properties, chloride penetration and freeze-thaw resistance of self-compacting concrete[J]. Construction & Building Materials, 2008,22(4):456.
2 Vishwakarma Vinita, Ramachandran D, Anbarasan N , et al. Stu-dies of rice husk ash nanoparticles on the mechanical and microstructural properties of the concrete[J]. Materials Today Proceedings, 2016,3(6):1999.
3 Tang Yujuan, Zuo Xiaobao, He Shaoli , et al. Influence of slag content and water-binder ratio on leaching behavior of cement pastes[J]. Construction & Building Materials, 2016,129:61.
4 Zhuang Yizhou, Zheng Haibin, Ji Tao , et al. Experimental study on the effect of rice husk ash on the perfor-mance of ultra high perfor-mance concrete[J].China Concrete and Cement Products, 2012(6):10(in Chinese).
4 庄一舟, 郑海彬, 季韬 , 等. 稻壳灰替代硅灰对超高性能混凝土性能影响的试验研究[J].混凝土与水泥制品, 2012(6):10.
5 Chen J J, Ng P L, Li L G , et al. Production of high-performance concrete by addition of fly ash microsphere and condensed silica fume[J]. Procedia Engineering, 2017,172:165.
6 Borosnyói Adorján . Long term durability performance and mechanical properties of high performance concretes with combined use of supplementary cementing materials[J]. Construction & Building Materials, 2016,112:307.
7 Sensale G R D . Effect of rice-husk ash on durability of cementitious materials[J]. Cement & Concrete Composites, 2010,32(9):718.
8 Elahi A , Basheer P A M, Nanukuttan S V, et al. Mechanical and durability properties of high performance concretes containing supplementary cementitious materials[J]. Construction & Building Materials, 2010,24(3):292.
9 Jalal Mostafa, Pouladkhan Ali Reza, Norouzi Hassan , et al. Chloride penetration, water absorption and electrical resistivity of high performance concrete containing nano silica and silica fume[J]. The Journal of American Science, 2012,8(4):278.
10 Yang Yi, Tong Zhangfa, Feng Qingge , et al. Resistance to the penetration of chloride ions of high performance concrete with high volume mineral admixture[J].Journal of Wuhan University of Technology, 2010(15):9(in Chinese).
10 杨义, 童张法, 冯庆革 , 等. 大掺量高性能混凝土的抗氯离子渗透特性[J].武汉理工大学学报, 2010(15):9.
11 Wang Chengqi, Zhang Yueran . Effect of mineral admixture on durability of high performance self-compacting concrete for marine structure[J].Concrete, 2014(1):56(in Chinese).
11 王成启, 张悦然 . 矿物掺合料对海工自密实高性能混凝土耐久性影响[J].混凝土, 2014(1):56.
12 Lee Bokyeong, Kim Gyuyong, Nam Jeongsoo , et al. Compressive strength, resistance to chlorideion penetration and freezing/thawing of slag-replaced concrete and cementless slag concrete containing desulfurization slag activator[J]. Construction & Building Materials, 2016,128:341.
13 Harbec D, Zidol A, Tagnit-Hamou A , et al. Mechanical and durabi-lity properties of high performance glass fume concrete and mortars[J]. Construction and Building Materials, 2017,134:142.
14 Yao Zhixiong, Wu Bo . Mechanical properties and fast freezing-thawing characteristics of double admixture high performance concrete[J].Concrete, 2015(9):12(in Chinese).
14 姚志雄, 吴波 . 双掺高性能混凝土力学性能及快速冻融特性[J].混凝土, 2015(9):12.
15 Cao Haopeng, Yuan Fen, Bao Meihui , et al. Research on frost resistance performance of high-performance concrele mixed wiIh fly ash in Urumqi area[J]. Coal Ash, 2016,28(4):1(in Chinese).
15 曹浩鹏, 袁芬, 包美慧 , 等. 乌鲁木齐地区掺加粉煤灰高性能混凝土抗冻性能的研究[J]. 粉煤灰, 2016,28(4):1.
16 Hale W Micah, Freyne Seamus F, Russell Bruce W . Examining the frost resistance of high performance concrete[J]. Construction & Building Materials, 2009,23(2):878.
17 ?azniewska-Piekarczyk Beata . The type of air-entraining and viscosity modifying admixtures and porosity and frost durability of high performance self-compacting concrete[J]. Construction & Building Materials, 2013,40(3):659.
18 Vejmelková Eva, Keppert Martin, Rovnaníková Pavla , et al. Pro-perties of high performance concrete containing fine-ground ceramics as supplementary cementitious material[J]. Cement & Concrete Composites, 2012,34(1):55.
19 Fu Yawei, Cai Liangcai, Cao Dingguo , et al. Freeze-thaw durability and damage mechanics model of high performance alkali-slag concrete[J].Engineering Machanics, 2012(3):103(in Chinese).
19 付亚伟, 蔡良才, 曹定国 , 等. 碱矿渣高性能混凝土冻融耐久性与损伤模型研究[J].工程力学, 2012(3):103.
20 Zhang D, Xu D, Cheng X . Carbonation resistance of sulphoaluminate cement-based high performance concrete[J]. Journal of Wuhan University of Technology-Materials Science Edition, 2009,24(4):663.
21 Cheng Yuke . Study on the properties of high performance concrete with compound mineral admixtures[D]. Nanjing:Nanjing Forestry University, 2010(in Chinese).
21 程宇科 . 掺复合型掺合料高性能混凝土性能的试验研究[D]. 南京:南京林业大学, 2010.
22 Sun Zhenhua . Experimental study on durability of high performance concrete[D]. Zhengzhou: Zhengzhou University, 2011(in Chinese).
22 孙振华 . 高性能混凝土耐久性试验研究[D]. 郑州:郑州大学, 2011.
23 Tu Liuqing . Researches on carbonation behavior and mechanism of shrinkage-compensated high performance concrete[D]. Wuhan:Wuhan University of Technology, 2011(in Chinese).
23 屠柳青 . 高性能补偿收缩混凝土碳化行为与机理研究[D]. 武汉:武汉理工大学, 2011.
24 Wang Yuangang, Ma Peng, Huang Kaijian , et al. Impact of compo-site mineral admixture on carbonization resistance of high perfor-mance concrete[J]. Advanced Materials Research, 2015,1095:248.
25 Vejmelková Eva, Pavlíková Milena, Keppert Martin , et al. High perfor-mance concrete with Czech metakaolin: Experimental analysis of strength, toughness and durability characteristics[J]. Construction & Building Materials, 2010,24(8):1404.
26 Rapha?l Bucher, Paco Diederich, Gilles Escadeillas , et al. Service life of metakaolin-based concrete exposed to carbonation: Comparison with blended cement containing fly ash, blast furnace slag and limestone filler[J]. Cement and Concrete Research, 2017,99:18.
27 Ju Yue . Study on anti-sulfate corrosion performance of high perfor-mance concrete with compound mineral admixtures[D]. Nanjing:Nanjing Forestry University, 2016(in Chinese).
27 居月 . 复合掺合料高性能混凝土抗硫酸盐侵蚀性研究[D]. 南京:南京林业大学, 2016.
28 Zeng Fanjiang . Experimental study of sulfate attack of highperfor-mance concrete with compound mineral admixture[D]. Urumchi:Xinjiang Agricultural University, 2015(in Chinese).
28 曾凡江 . 复掺矿物掺合料高性能混凝土抗硫酸盐侵蚀试验研究[D]. 乌鲁木齐:新疆农业大学, 2015.
29 Li Tiejun . Experiment reseach on shrinkage and anti erosion of self-curing high performance concrete[D]. Yinchuan:Ningxia University, 2011(in Chinese).
29 李铁军 . 自养护高性能混凝土抗侵蚀及收缩试验研究[D]. 银川:宁夏大学, 2011.
30 Smarzewski Piotr, Barnat-Hunek Danuta . Mechanical and durability related properties of high performance concrete made with coal cinder and waste foundry sand[J]. Construction & Building Materials, 2016,121:9.
31 Hong Lei, Tang Xiaodong . Influnence of freezing-thawing cycles on chloride permeability of high performance concrete[J].Journal of Wuhan University of Technology, 2010(18):41(in Chinese).
31 洪雷, 唐晓东 . 冻融循环对高性能混凝土氯离子渗透性的影响[J].武汉理工大学学报, 2010(18):41.
32 Hong Lei, Cheng Wei, Wang Shumei . Influence of two-way load on chloride permeability of high performance concrete[J]. Journal of Building Materials, 2012,15(6):852(in Chinese).
32 洪雷, 程伟, 王淑梅 . 双向压荷载对高性能混凝土氯离子渗透性的影响[J]. 建筑材料学报, 2012,15(6):852.
33 Wei Hua, Chen Xunjie, Zhou Hongtao , et al. High performance marine concrete deterioration process under multi-factor coupling action[J].Concrete, 2016(4):28(in Chinese).
33 韦华, 陈迅捷, 周红涛 , 等. 多因素耦合作用下海工高性能混凝土劣化过程研究[J].混凝土, 2016(4):28.
34 Gao Jun, Yang Haicheng, Xiong Jianbo , et al. Chloride penetration of air-entrained high-performance concrete subjecdted to chloride and freeze-thaw[J].Port & Waterway Engineering, 2016(5):31(in Chinese).
34 高军, 杨海成, 熊建波 , 等. 氯盐与冻融共同作用下引气高性能混凝土氯离子渗透性[J].水运工程, 2016(5):31.
35 Tian Jun, Wang Wenwei . Chloride penetration of air-entrained high-performance concrete subjecdted to chloride and freeze-thaw[J].Concete, 2015(4):60(in Chinese).
35 田俊, 王文炜 . 盐冻融-荷载耦合作用下高性能混凝土试验及损伤模型研究[J].混凝土, 2015(4):60.
36 Yu Hongfa . Durability, mechanism and service life prediction method of high performance concrete in alt lake regious[D]. Nanjing:Southeast University, 2004(in Chinese).
36 余红发 . 盐湖地区高性能混凝土的耐久性、机理与使用寿命预测方法[D]. 南京:东南大学, 2004.
37 Yu Hongfa, Yan Lianghui . Study on prediction of concrete service life Ⅰ—Theoretical model[J]. Journal of the Chinese Ceramic Society, 2002,30(6):686(in Chinese).
37 余红发, 鄢良慧 . 混凝土使用寿命预测方法的研究Ⅰ——理论模型[J]. 硅酸盐学报, 2002,30(6):686.
38 Shi Huisheng, Wang Qiong . Research on service life prediction of marine concrete[J]. Journal of Building Materials, 2004,7(2):161(in Chinese).
38 施惠生, 王琼 . 海工混凝土使用寿命预测研究[J]. 建筑材料学报, 2004,7(2):161.
39 Fu Yawei, Cai Liangcai, Wu Yonggen . Freeze-thaw cycle test and damage mechanics models of alkali-activated slag concrete[J]. Construction & Building Materials, 2011,25(7):3144.
40 Liu Lianglin, Li Jiuming, Ouyang Luxia , et al. Study on the damage evaluation method of high performance concrete under freeze-thaw action[J]. Journal of Jinggangshan University (Natural Science), 2016,37(4):68(in Chinese).
40 刘良林, 李久明, 欧阳鹭霞 , 等. 冻融作用下高性能混凝土损伤评价方法研究[J]. 井冈山大学学报:自然科学版, 2016,37(4):68.
41 Yan Kun . Frost resistance of carbonated concrete under multiple factors[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2007(in Chinese).
41 燕坤 . 多重因素作用下碳化混凝土的抗冻性[D]. 南京:南京航空航天大学, 2007.
42 Mu Ru . Durability and service life prediction of concrete subjected to the combined action of freezing-thawing, sustained external flexural stress and salt solution[D]. Nanjing:Southeast University, 2000(in Chinese).
42 慕儒 . 冻融循环与外部弯曲应力、盐溶液复合作用下混凝土的耐久性与寿命预测[D]. 南京:东南大学, 2000.
43 Du Peng . Freeze-thaw damage model and service life prediction of concrete under multi-factor coupling[D]. Beijing:China Building Materials Academy, 2014(in Chinese).
43 杜鹏 . 多因素耦合作用下混凝土的冻融损伤模型与寿命预测[D]. 北京:中国建筑材料科学研究总院, 2014.
[1] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[2] 王艳, 李伊岚, 杨子凡, 常天风, 孙琳琳. OPC-SAC复合胶凝体系对超高性能混凝土性能的影响[J]. 材料导报, 2025, 39(2): 23120218-7.
[3] 冷建成, 赵雷, 张新, 许宏伟. 基于磁记忆在线监测的再制造毛坯疲劳寿命预测方法[J]. 材料导报, 2025, 39(2): 23040250-6.
[4] 何涛, 马国政, 李海庆, 石佳东, 李振, 郭伟玲, 邢志国. 固体润滑齿轮接触疲劳寿命及影响因素研究现状[J]. 材料导报, 2025, 39(1): 23120091-15.
[5] 梁艳玲, 霍润科, 宋战平, 穆彦虎, 秋添, 宋子羿. 基于矿物溶解理论的砂岩化学损伤动态模型[J]. 材料导报, 2024, 38(8): 22080206-7.
[6] 龙武剑, 余阳, 何闯, 李雪琪, 熊琛, 冯甘霖. 纳米增强水泥基复合材料抗氯离子迁移及固化性能综述[J]. 材料导报, 2024, 38(7): 22090138-10.
[7] 王元战, 杨旻鑫, 龚晓龙, 王禹迟, 郭尚. 考虑地下水位影响的碱渣土地基半埋混凝土内氯离子传输试验研究[J]. 材料导报, 2024, 38(7): 22010226-7.
[8] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[9] 杨简, 李洋, 陈宝春, 徐港, 黄卿维. UHPC直拉试验方法与本构关系研究[J]. 材料导报, 2024, 38(6): 22110263-9.
[10] 褚洪岩, 汤金辉, 王群, 高李, 赵志豪. 采用纳米氧化铝制备高弹性模量超高性能混凝土的可行性研究[J]. 材料导报, 2024, 38(5): 22110073-6.
[11] 靳红华, 任青阳, 肖宋强, 任小坤. 模拟酸雨侵蚀环境下悬臂抗滑桩耐久性极限寿命预测[J]. 材料导报, 2024, 38(5): 22070148-8.
[12] 梁宁慧, 毛金旺, 游秀菲, 刘新荣, 周侃. 多尺度聚丙烯纤维混凝土弯曲疲劳寿命试验及数值模拟[J]. 材料导报, 2024, 38(4): 22040023-8.
[13] 卢慧扬, 林金保, 刘惠民, 王炳权, 李一豪, 陈巽. 镁合金轧制边裂损伤模型的研究进展[J]. 材料导报, 2024, 38(24): 23110051-8.
[14] 冯炜森, 杨成鹏, 贾斐. 复合材料层压板S-N曲线模型的综述与评估[J]. 材料导报, 2024, 38(22): 23050190-10.
[15] 刘亚敏, 韩旭晖, 高晨光, 钟国亮. 全程老化沥青中温抗疲劳性能及预测模型研究[J]. 材料导报, 2024, 38(21): 23070147-6.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed