Abstract: Owing to its superior mechanical properties and weight reduction benefits, 2195 aluminum-lithium alloy has emerged as the preferred material for manufacturing critical components of aerospace equipment such as spacecraft and launch vehicles. the microstructural damage evolution of 2195 Al-Li alloy under varying loading scenarios serves as a critical determinant of its formability and service life. The GTN model, one of the most extensively utilized models in mesoscopic damage modeling, is capable of accurately predicting the damage evolution and fracture behavior of ductile metals. Achieving this level of accuracy hinges on the precise calibration of the GTN model parameters. Based on micro characterization and macro performance test, the response surface model of damage parameters was established through numerical simulation and experiment, and the mechanism of the influence of damage parameters on the mechanical properties of 2195 Al-Li alloy was revealed. Based on this, the GTN model parameters of 2195-T6 aluminum-lithium alloy sheet were determined by combining the response surface with MOPSO algorithm. The results show that the combination of response surface method and MOPSO optimization algorithm can achieve the accurate calibration of GTN model parameters.
1 Rioja R J, Liu J. Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science, 2012, 43A(9), 3325. 2 Li S. S. , Yue X. , Li Q. Y, et al. Journal of Materials Research and Technology, 2023, 27, 944. 3 Yan Z X, Pan Y, Li J Y, et al. Rare Metal Materials and Engineering, 2024, 53(12), 3514. 4 Cai W, Sun C Y, Wang C H, et al. International Journal of Plasticity, 2022, 156, 103366. 5 Zhang Z, Wu Y Q, Huang F L. International Journal of Solids and Structures, 2022, 236, 111324. 6 Algarni M, Ghazali S, Zwawi M. Mechanics of Solids, 2021, 56(5), 787. 7 Li G, Cui S S. Theoretical and Applied Fracture Mechanics, 2020, 109, 102686. 8 Khademi M, Mirnia M J, Naeini H M. International Journal of Solids and Structures, 2024, 301, 112947. 9 Li X J, Xu M, Zhang Z Q. Journal of Materials Research and Technology, 2021, 14, 1366. 10 Kami A, Dariani B M, Vanini A S, et al. Journal of Materials Processing Technology, 2015, 216, 472. 11 Chen Y B, Lorentz E, Besson J. International Journal of Plasticity, 2020, 130, 102701. 12 He Z, Zhu H, Hu Y M. International Journal of Mechanical Sciences, 2021, 192, 106081. 13 Yang X, Li Y Z, Jiang W, et al. Engineering Fracture Mechanics, 2021, 256, 107989. 14 Chahboub Y, Szavai S. Procedia Structural Integrity, 2019, 16, 81. 15 Steglich D, Siegmund T, Brocks W. Computational Materials Science, 1999, 16(1), 404. 16 Xu W J, Xie D, Li F, et al. The Chinese Journal of Nonferrous Metals, 2020, 30(8), 1866 (in Chinese). 徐戊矫, 谢丹, 李芳, 等. 中国有色金属学报, 2020, 30(8), 1866. 17 Broggiato G B, Campana F, Cortese L. Meccanica, 2007, 42(1), 9. 18 Abbasi M, Bagheri B, Ketabchi M, Haghshenas D F. Computational Materials Science, 2012, 53(1), 368. 19 Vadillo G, Fernández-sáez J. European Journal of Mechanics-A/Solids, 2009, 28(3), 417. 20 McClintock F. A. Journal of Applied Mechanics, 1968, 35(2), 363. 21 Rice J R, Tacey D M. Journal of the Mechanics and Physics of Solids, 1969, 17(3), 201. 22 Gurson A L. Journal of Engineering Materials and Technology, 1977, 99(1), 2. 23 Tvergaard V. International Journal of Fracture, 1981, 17(4), 389. 24 He M, Li F, Wang Z. Chinese Journal of Aeronautics, 2011, 24(3), 378. 25 Abbassi F, Belhadj T, Mistou S, Zghal A. Materials & Design, 2013, 45, 605.