Please wait a minute...
材料导报  2025, Vol. 39 Issue (23): 24120146-8    https://doi.org/10.11896/cldb.24120146
  金属与金属基复合材料 |
基于响应面法和MOPSO算法的2195-T6铝锂合金GTN损伤模型
贾向东*, 罗展, 镐昆明, 张洪耀, 陆伟
南京林业大学机械电子工程学院,南京 210037
The GTN Damage Model for 2195-T6 Al-Li Alloy Based on Response Surface Methodology and MOPSO Algorithm
JIA Xiangdong*, LUO Zhan, HAO Kunming, ZHANG Hongyao, LU Wei
College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
下载:  全 文 ( PDF ) ( 24357KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 2195铝锂合金凭借其优良的机械性能和减重优势,成为航天器和运载火箭等航空航天装备关键部件的首选材料,不同加载条件下2195铝锂合金损伤演化是影响其成形性能的关键。作为细观损伤模型中应用极为广泛的模型之一,GTN模型能够准确预测韧性金属的损伤演化与断裂,而实现这一目标的关键是GTN模型参数的准确标定。以微观表征和宏观性能测试为基础,通过数值仿真与试验相结合,建立了损伤参数的响应面模型,揭示了损伤参数对2195铝锂合金力学性能的影响机制。将响应面法与MOPSO算法相结合,确定了2195-T6铝锂合金板材的GTN模型参数。研究结果表明,将响应面法与MOPSO优化算法结合的反向标定法,可以实现GTN模型的准确标定。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
贾向东
罗展
镐昆明
张洪耀
陆伟
关键词:  铝锂合金  损伤模型  GTN模型  响应面法  MOPSO算法    
Abstract: Owing to its superior mechanical properties and weight reduction benefits, 2195 aluminum-lithium alloy has emerged as the preferred material for manufacturing critical components of aerospace equipment such as spacecraft and launch vehicles. the microstructural damage evolution of 2195 Al-Li alloy under varying loading scenarios serves as a critical determinant of its formability and service life. The GTN model, one of the most extensively utilized models in mesoscopic damage modeling, is capable of accurately predicting the damage evolution and fracture behavior of ductile metals. Achieving this level of accuracy hinges on the precise calibration of the GTN model parameters. Based on micro characterization and macro performance test, the response surface model of damage parameters was established through numerical simulation and experiment, and the mechanism of the influence of damage parameters on the mechanical properties of 2195 Al-Li alloy was revealed. Based on this, the GTN model parameters of 2195-T6 aluminum-lithium alloy sheet were determined by combining the response surface with MOPSO algorithm. The results show that the combination of response surface method and MOPSO optimization algorithm can achieve the accurate calibration of GTN model parameters.
Key words:  Al-Li alloy    damage model    GTN model    response surface methodology    MOPSO algorithm
出版日期:  2025-12-10      发布日期:  2025-12-03
ZTFLH:  TG386.3  
基金资助: 国家自然科学基金(52205384)
通讯作者:  *贾向东,博士,副教授,硕士研究生导师,主要从事轻合金能场辅助成形工艺与质量控制、金属塑性成形工艺与装备智能化等方面的研究。jiaxd.good@njfu.edu.cn;jiaxd.good@163.com   
引用本文:    
贾向东, 罗展, 镐昆明, 张洪耀, 陆伟. 基于响应面法和MOPSO算法的2195-T6铝锂合金GTN损伤模型[J]. 材料导报, 2025, 39(23): 24120146-8.
JIA Xiangdong, LUO Zhan, HAO Kunming, ZHANG Hongyao, LU Wei. The GTN Damage Model for 2195-T6 Al-Li Alloy Based on Response Surface Methodology and MOPSO Algorithm. Materials Reports, 2025, 39(23): 24120146-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24120146  或          https://www.mater-rep.com/CN/Y2025/V39/I23/24120146
1 Rioja R J, Liu J. Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science, 2012, 43A(9), 3325.
2 Li S. S. , Yue X. , Li Q. Y, et al. Journal of Materials Research and Technology, 2023, 27, 944.
3 Yan Z X, Pan Y, Li J Y, et al. Rare Metal Materials and Engineering, 2024, 53(12), 3514.
4 Cai W, Sun C Y, Wang C H, et al. International Journal of Plasticity, 2022, 156, 103366.
5 Zhang Z, Wu Y Q, Huang F L. International Journal of Solids and Structures, 2022, 236, 111324.
6 Algarni M, Ghazali S, Zwawi M. Mechanics of Solids, 2021, 56(5), 787.
7 Li G, Cui S S. Theoretical and Applied Fracture Mechanics, 2020, 109, 102686.
8 Khademi M, Mirnia M J, Naeini H M. International Journal of Solids and Structures, 2024, 301, 112947.
9 Li X J, Xu M, Zhang Z Q. Journal of Materials Research and Technology, 2021, 14, 1366.
10 Kami A, Dariani B M, Vanini A S, et al. Journal of Materials Processing Technology, 2015, 216, 472.
11 Chen Y B, Lorentz E, Besson J. International Journal of Plasticity, 2020, 130, 102701.
12 He Z, Zhu H, Hu Y M. International Journal of Mechanical Sciences, 2021, 192, 106081.
13 Yang X, Li Y Z, Jiang W, et al. Engineering Fracture Mechanics, 2021, 256, 107989.
14 Chahboub Y, Szavai S. Procedia Structural Integrity, 2019, 16, 81.
15 Steglich D, Siegmund T, Brocks W. Computational Materials Science, 1999, 16(1), 404.
16 Xu W J, Xie D, Li F, et al. The Chinese Journal of Nonferrous Metals, 2020, 30(8), 1866 (in Chinese).
徐戊矫, 谢丹, 李芳, 等. 中国有色金属学报, 2020, 30(8), 1866.
17 Broggiato G B, Campana F, Cortese L. Meccanica, 2007, 42(1), 9.
18 Abbasi M, Bagheri B, Ketabchi M, Haghshenas D F. Computational Materials Science, 2012, 53(1), 368.
19 Vadillo G, Fernández-sáez J. European Journal of Mechanics-A/Solids, 2009, 28(3), 417.
20 McClintock F. A. Journal of Applied Mechanics, 1968, 35(2), 363.
21 Rice J R, Tacey D M. Journal of the Mechanics and Physics of Solids, 1969, 17(3), 201.
22 Gurson A L. Journal of Engineering Materials and Technology, 1977, 99(1), 2.
23 Tvergaard V. International Journal of Fracture, 1981, 17(4), 389.
24 He M, Li F, Wang Z. Chinese Journal of Aeronautics, 2011, 24(3), 378.
25 Abbassi F, Belhadj T, Mistou S, Zghal A. Materials & Design, 2013, 45, 605.
[1] 王剑烨, 李肖, 彭丽云, 王冬勇. EICP加固砂土的强度及应力-应变关系研究[J]. 材料导报, 2025, 39(11): 24070113-9.
[2] 凡涛涛, 韩松凯, 司春棣. 紫外老化对硫酸钙晶须改性沥青疲劳性能的影响[J]. 材料导报, 2025, 39(11): 24040015-6.
[3] 赵新元, 杨科, 何祥, 魏祯, 于祥, 张继强. 基于RSM-BBD的多源煤基固废胶结体配比及性能研究[J]. 材料导报, 2024, 38(9): 22090099-7.
[4] 梁艳玲, 霍润科, 宋战平, 穆彦虎, 秋添, 宋子羿. 基于矿物溶解理论的砂岩化学损伤动态模型[J]. 材料导报, 2024, 38(8): 22080206-7.
[5] 秦怡歆, 曾凯, 邢保英, 张洪申, 何晓聪. 颗粒增强粘接层结构参数对连接强度的影响及工艺优化[J]. 材料导报, 2024, 38(6): 22060206-5.
[6] 卢慧扬, 林金保, 刘惠民, 王炳权, 李一豪, 陈巽. 镁合金轧制边裂损伤模型的研究进展[J]. 材料导报, 2024, 38(24): 23110051-8.
[7] 刘亚敏, 韩旭晖, 高晨光, 钟国亮. 全程老化沥青中温抗疲劳性能及预测模型研究[J]. 材料导报, 2024, 38(21): 23070147-6.
[8] 郭志永, 李猛, 张志强, 路学成, 张天刚, 曹轶然. 基于响应面法的镍基高温合金GH4169电弧增材工艺优化[J]. 材料导报, 2024, 38(19): 23060136-7.
[9] 关虓, 龙行, 丁莎, 张鹏鑫. 煤矸石粉混凝土冻融损伤模型与劣化机制[J]. 材料导报, 2024, 38(16): 22080144-9.
[10] 张志强, 贺世伟, 李涵茜, 路学成, 张天刚, 王浩. 激光与CMT+P电弧复合增材工艺对2024铝合金气孔缺陷的影响规律[J]. 材料导报, 2024, 38(14): 23040011-9.
[11] 赵胜前, 游庆龙, 李京洲, 尹杰, 黄之懿. 改性聚酯纤维对机场水泥混凝土的增韧阻裂效果分析[J]. 材料导报, 2024, 38(13): 23030172-8.
[12] 肖瑶, 邓华锋, 李建林, 熊雨, 程雷. 利用Triton X-100提升巴氏芽孢杆菌脲酶活性的效果[J]. 材料导报, 2024, 38(1): 23060069-7.
[13] 吴伟喆, 刘阳, 张艺欣, 黄建山, 闫国威. 冻融环境下FRCC孔隙结构与力学性能研究综述[J]. 材料导报, 2023, 37(S1): 23010108-12.
[14] 于以标, 陈乐平, 徐勇, 袁源平, 方森鹏. 2060-T8E30铝锂合金的高温拉伸变形行为及显微组织研究[J]. 材料导报, 2023, 37(6): 21090209-6.
[15] 陈小丽, 谭敏, 罗文东. 温度对铝锂合金阳极氧化膜结构及耐蚀性的影响[J]. 材料导报, 2022, 36(Z1): 21120067-5.
[1] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[2] WU Wei, CHEN Shiying, ZONG Mengjingzi. Dielectric Properties and Thermal Stability of Nano-Al2O3/Polyether Sulfone-epoxy Resin Composites[J]. Materials Reports, 2017, 31(20): 21 -24 .
[3] MO Peicheng, WU Yi, YU Wenlin, WANG Jilin, ZOU Zhengguang, ZHONG Shenglin, WANG Peng. In Situ Synthesis of PcBN Composites by cBN-Ti-Al-Si and Their Mechanical Property[J]. Materials Reports, 2018, 32(14): 2355 -2359 .
[4] HU Yaoqiang, CHEN Fajin, LIU Haining, ZHANG Huifang, WU Zhijian, YE Xiushen. Preparation of Poly(N-isopropylacrylamide) Hydrogel and Its Thermally Induced Aggregation Behavior[J]. Materials Reports, 2018, 32(14): 2491 -2496 .
[5] SONG Gang, CHI Jiayu, YU Jingwei, LIU Liming. Corrosion Behavior of Mg-steel Laser-TIG Hybrid Welding Joint[J]. Materials Reports, 2018, 32(16): 2773 -2777 .
[6] HUANG Hui, HAN Jianfeng, WANG Yishun, XIA Yang, ZHANG Jun, GAN Yongping, LIANG Chu, ZHANG Wenkui. Supercritical CO2 Assisting Cladding of LiMnPO4 on the Surface of Li[Li0.2-Mn0.54Co0.13Ni0.13]O2 and Its Electrochemical Properties[J]. Materials Reports, 2018, 32(23): 4072 -4078 .
[7] WANG Zhonghui, XIN Yong. Molecular Dynamics Simulation on the Relationship of Oxygen Diffusion and Polymer Chains Activity[J]. Materials Reports, 2019, 33(8): 1293 -1297 .
[8] CHANG Jingjing. Spin Coating Epitaxial Films[J]. Materials Reports, 2019, 33(12): 1919 -1920 .
[9] ZHUANG Xiaodong, LI Rongxing, YU Xiaohua, XIE Gang, HE Xiaocai, XU Qingxin. Preparation of Lithium Titanate Electrode Materials by Solid Phase Method[J]. Materials Reports, 2019, 33(16): 2654 -2659 .
[10] BIAN Guixue, CHEN Yueliang, ZHANG Yong, WANG Andong, WANG Zhefu. Equivalent Conversion Coefficient of Aluminum/Titanium Alloy Between Acidic NaCl Solution with Different Concentration and Water Based on Galvanic Corrosion Simulation[J]. Materials Reports, 2019, 33(16): 2746 -2752 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed