Please wait a minute...
材料导报  2025, Vol. 39 Issue (11): 24070113-9    https://doi.org/10.11896/cldb.24070113
  无机非金属及其复合材料 |
EICP加固砂土的强度及应力-应变关系研究
王剑烨, 李肖, 彭丽云*, 王冬勇
北京建筑大学土木与交通工程学院,北京 100044
Study on the Strength and Stress-Strain Relationship of EICP-Reinforced Sandy Soil
WANG Jianye, LI Xiao, PENG Liyun*, WANG Dongyong
School of Civil and Transportation Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
下载:  全 文 ( PDF ) ( 31245KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在荒漠化土地上进行基础设施建设时,不可避免的要对砂土进行加固。采用绿色环保的酶诱导碳酸钙沉淀(EICP)技术可以有效地提高砂土的强度等工程性质,同时避免造成大量的碳排放和水土污染。本工作通过无侧限抗压强度试验,研究了不同相对密实度、胶结液浓度、酶胶比等因素对EICP加固砂土强度的影响。结果表明,EICP加固砂土强度受土样密实度和碳酸钙含量的共同影响,且同一密实度下,加固土强度与碳酸钙含量呈高度正相关,相对密实度为0.7、酶胶比为1∶1、胶结液浓度为1 mol/L时为最佳方案。通过SEM和Micro-CT试验,结合宏观试验结果揭示了加固土峰值应力提高主要归结于碳酸钙的胶结、桥接与孔喉封堵作用,残余应力提高源自包附作用,碳酸钙的生成倾向于将较大孔隙分为若干小孔隙。结合EICP加固砂土的应力-应变曲线特征,基于损伤力学体系建立了符合加固土应变软化特征的损伤演化模型,拟合结果表明该模型可以较为准测的预测EICP加固砂土的应力-应变关系。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王剑烨
李肖
彭丽云
王冬勇
关键词:  EICP  土体加固  扫描电镜  CT  损伤模型    
Abstract: It is inevitable to strengthen the sandy soil in the construction of infrastructure on desertified land. The use of the Enzyme-induced carbonate precipitation (EICP) technique, an environmentally friendly method with less carbon emissions and soil and water pollution, can effectively improve the sandy soil’s engineering properties. In this work, the effects of various factors, including relative density, cementation solution concentration, and enzyme- cement ratios, on the strength of EICP-reinforced sandy soil were investigated through unconfined compressive strength tests. The findings indicate that the strength of EICP-reinforced sandy soil is influenced by both soil sample density and calcium carbonate content. For a given density, the strength of the reinforced soil shows a high positive correlation with calcium carbonate content. An optimal parameter combination is recommended to be a relative density of 0. 7, an enzyme-cement ratio of 1∶1, and a cementation solution concentration of 1 mol/L. Combined macroscopic test results with SEM and Micro-CT tests, it is revealed that the increase in peak stress of the reinforced soil is primarily due to the bonding, bridging and pore throat-blocking effects of calcium carbonate, while the increase in residual stress is attributed to the encapsulating effect. Calcium carbonate tends to divide larger pores into several smaller ones. Through the analyzing to the stress-strain curve of EICP-reinforced sandy soil, a damage evolution model was established based on the damage mechanics system, which aligns with the strain-softening characteristics of the reinforced soil. The fitting results indicate that this model can accurately predict the stress-strain relationship of EICP-reinforced sandy soil.
Key words:  EICP    soil improvement    scanning electron microscopy    CT    damage model
发布日期:  2025-05-29
ZTFLH:  TU411  
基金资助: 国家自然科学基金(42202309;42172299;42372312)
通讯作者:  *彭丽云,北京建筑大学土木与交通工程学院教授、博士研究生导师。目前主要从事土体加固、特殊土工程、城市轨道交通运输工程等方面的研究工作。pengliyun@bucea.edu.cn   
作者简介:  王剑烨,2020年7月于英国杜伦大学获得工学博士学位。目前主要研究领域为微生物加固土和土体本构模型。
引用本文:    
王剑烨, 李肖, 彭丽云, 王冬勇. EICP加固砂土的强度及应力-应变关系研究[J]. 材料导报, 2025, 39(11): 24070113-9.
WANG Jianye, LI Xiao, PENG Liyun, WANG Dongyong. Study on the Strength and Stress-Strain Relationship of EICP-Reinforced Sandy Soil. Materials Reports, 2025, 39(11): 24070113-9.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24070113  或          https://www.mater-rep.com/CN/Y2025/V39/I11/24070113
1 Song X, Wang T, Xue X, et al. Environmental Earth Sciences, 2015, 74(4), 3123.
2 Zhang Z, Huisingh D. Journal of Cleaner Production, 2018, 182, 765.
3 Yu X, Lei J, Gao X. Journal of Arid Land, 2022, 14(11), 1181.
4 Liu H L, Zhao M H. China Civil Engineering Journal, 2016, 49(1), 96(in Chinese).
刘汉龙, 赵明华. 土木工程学报, 2016, 49(1), 96.
5 Zhao J Q, Ding X M, Liu H L, et al. Rock and Soil Mechanics, 2023, 44(8), 2327(in Chinese).
赵津桥, 丁选明, 刘汉龙, 等. 岩土力学, 2023, 44(8), 2327.
6 Shi S, Gao L, Cai X, et al. Computers and Geotechnics, 2020, 124, 103574.
7 Zhang L, Wen P H, Wang Z H, et al. Materials Reports, 2017, 31(21), 98(in Chinese).
张磊, 问鹏辉, 王朝辉, 等. 材料导报, 2017, 31(21), 98.
8 Zhang L L, Hua S D, Zhu H J, et al. Materials Reports, 2020, 34(9), 9034(in Chinese).
张立力, 华苏东, 诸华军, 等. 材料导报, 2020, 34(9), 9034.
9 He J X, Xia W Z. Construction Economy, 2024, 45(1), 5(in Chinese).
何继新, 夏五洲. 建筑经济, 2024, 45(1), 5.
10 Liu L, Wang X, Wang Z. Greenhouse Gases-Science and Technology, 2023, 13(5), 732.
11 Peng L Y, Du X T, Qi J L, et al. Journal of Beijing Jiaotong University, 2023, 47(6), 154(in Chinese).
彭丽云, 杜辛涛, 齐吉琳, 等. 北京交通大学学报, 2023, 47(6), 154.
12 Liu Y, Gao Y, Zhou Y, et al. Acta Geotechnica, 2024, 19(3), 1571.
13 Liu L, Gao Y, Meng H, et al. Acta Geotechnica, 2024, 20, 1193.
14 He J, Liu Y, Liu L, et al. Biogeotechnics, 2023, 1(2), 100022.
15 Han L J, Li J S, Xue Q, et al. Constructionc and Building Materials, 2022, 314, 125577.
16 Tian W, Li T, JIA N, et al. Materials Reports, 2022, 36(15), 78(in Chinese).
田威, 李腾, 贾能, 等. 材料导报, 2022, 36(15), 78.
17 Muhammed A S, Kassim K A, Ahmad K, et al. International Journal of Environmental Science and Technology, 2021, 18(11), 3427.
18 Cui M J, Lai H J, Hoang T, et al. Acta Geotechnica, 2021, 16(2), 481.
19 Zhang J, Wang X, Shi L, et al. Construction and Building Materials, 2022, 339, 127792.
20 Gai X, Sanchez M. Acta Geotechnica, 2019, 14(3), 709.
21 Peng M. Influence of particle pradation optimization and calcium carbo-nate crystal morphology regulation on the solidification effect of sandy soil MICP. Master’s Thesis, China Three Gorges University, 2023(in Chinese).
彭萌. 颗粒级配优化和碳酸钙晶体形态调控对砂土MICP固化效果影响研究. 硕士学位论文, 三峡大学, 2023.
22 Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard Test Methods for Geotechnical Engineering:GB/T 50123-2019. China Planning Press, 2019(in Chinese).
中华人民共和国住房和城乡建设部. 土工试验方法标准:GB/T 50123-2019. 中国计划出版社, 2019.
23 Mortensen B M, DeJong J T. Dallas, Texas, American Society of Civil Engineers, 2011, 4012.
24 Zhang S, Liu Z, Li Z, et al. Biogeotechnics, 2023, 1(4), 100041.
25 Qin X, Xia Y, Wu J, et al. Energy & Fuels, 2022, 36(14), 7519.
[1] 陈新, 罗洪杰, 王理, 吴林丽, 栢天舒, 廉德良. 基于二维图像和三维模型的泡沫铝结构表征的差异[J]. 材料导报, 2025, 39(8): 24030173-8.
[2] 王张翔, 金浪, 陈培鑫, 陈飞翔, 姚天豫, 陈徐东. 基于CT和NMR技术的UHPC孔隙结构研究[J]. 材料导报, 2025, 39(5): 24020073-6.
[3] 凡涛涛, 韩松凯, 司春棣. 紫外老化对硫酸钙晶须改性沥青疲劳性能的影响[J]. 材料导报, 2025, 39(11): 24040015-6.
[4] 李洋, 陈雁彬, 胡俊杰, 吴谦秋, 黄海龙. 刮涂型人工脱粘层的力学和烧蚀性能研究[J]. 材料导报, 2025, 39(10): 24040003-5.
[5] 田威, 云伟, 党可欣, 李腾. 不同钙源EICP溶液改良路基黄土动力特性研究[J]. 材料导报, 2024, 38(9): 22110275-9.
[6] 王志良, 陈玉龙, 申林方, 施辉盟. 偏高岭土基地聚合物对水泥固化红黏土的改善机制[J]. 材料导报, 2024, 38(8): 22080080-7.
[7] 梁艳玲, 霍润科, 宋战平, 穆彦虎, 秋添, 宋子羿. 基于矿物溶解理论的砂岩化学损伤动态模型[J]. 材料导报, 2024, 38(8): 22080206-7.
[8] 都思哲, 张淼, 张玉, Selyutina Nina, Smirnov Ivan, 马树娟, 董晓强, 刘元珍. 基于CT图像三维重建的高温下再生混凝土孔隙特征研究[J]. 材料导报, 2024, 38(5): 22060128-11.
[9] 卢慧扬, 林金保, 刘惠民, 王炳权, 李一豪, 陈巽. 镁合金轧制边裂损伤模型的研究进展[J]. 材料导报, 2024, 38(24): 23110051-8.
[10] 石磊, 房佳明, 张建伟, 张欢, 边汉亮, 徐向春. 考虑干密度影响的EICP矿化粉砂土渗透特性试验研究[J]. 材料导报, 2024, 38(23): 23090044-7.
[11] 刘亚敏, 韩旭晖, 高晨光, 钟国亮. 全程老化沥青中温抗疲劳性能及预测模型研究[J]. 材料导报, 2024, 38(21): 23070147-6.
[12] 王习, 张云升, 张宇, 乔宏霞, 路承功, Hakuzweyezu Theogene, 刘志超, 李忠慧. CTF增效剂提升混凝土抗冻性能研究[J]. 材料导报, 2024, 38(19): 23030006-7.
[13] 关虓, 龙行, 丁莎, 张鹏鑫. 煤矸石粉混凝土冻融损伤模型与劣化机制[J]. 材料导报, 2024, 38(16): 22080144-9.
[14] 陈润华, 戴永祺, 张建业, 李方德, 鲁艳军. 基于微流控芯片的新型冠状病毒检测研究进展[J]. 材料导报, 2024, 38(12): 23020006-12.
[15] 阳虎, 单丽岩, 李志伟. 基于CT图像的水泥稳定RAP材料细观结构研究[J]. 材料导报, 2024, 38(1): 22050037-6.
[1] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[2] WU Wei, CHEN Shiying, ZONG Mengjingzi. Dielectric Properties and Thermal Stability of Nano-Al2O3/Polyether Sulfone-epoxy Resin Composites[J]. Materials Reports, 2017, 31(20): 21 -24 .
[3] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[4] MO Peicheng, WU Yi, YU Wenlin, WANG Jilin, ZOU Zhengguang, ZHONG Shenglin, WANG Peng. In Situ Synthesis of PcBN Composites by cBN-Ti-Al-Si and Their Mechanical Property[J]. Materials Reports, 2018, 32(14): 2355 -2359 .
[5] HU Yaoqiang, CHEN Fajin, LIU Haining, ZHANG Huifang, WU Zhijian, YE Xiushen. Preparation of Poly(N-isopropylacrylamide) Hydrogel and Its Thermally Induced Aggregation Behavior[J]. Materials Reports, 2018, 32(14): 2491 -2496 .
[6] SONG Gang, CHI Jiayu, YU Jingwei, LIU Liming. Corrosion Behavior of Mg-steel Laser-TIG Hybrid Welding Joint[J]. Materials Reports, 2018, 32(16): 2773 -2777 .
[7] HUANG Hui, HAN Jianfeng, WANG Yishun, XIA Yang, ZHANG Jun, GAN Yongping, LIANG Chu, ZHANG Wenkui. Supercritical CO2 Assisting Cladding of LiMnPO4 on the Surface of Li[Li0.2-Mn0.54Co0.13Ni0.13]O2 and Its Electrochemical Properties[J]. Materials Reports, 2018, 32(23): 4072 -4078 .
[8] WANG Zhonghui, XIN Yong. Molecular Dynamics Simulation on the Relationship of Oxygen Diffusion and Polymer Chains Activity[J]. Materials Reports, 2019, 33(8): 1293 -1297 .
[9] CHANG Jingjing. Spin Coating Epitaxial Films[J]. Materials Reports, 2019, 33(12): 1919 -1920 .
[10] ZHUANG Xiaodong, LI Rongxing, YU Xiaohua, XIE Gang, HE Xiaocai, XU Qingxin. Preparation of Lithium Titanate Electrode Materials by Solid Phase Method[J]. Materials Reports, 2019, 33(16): 2654 -2659 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed