Please wait a minute...
材料导报  2024, Vol. 38 Issue (12): 23020006-12    https://doi.org/10.11896/cldb.23020006
  无机非金属及其复合材料 |
基于微流控芯片的新型冠状病毒检测研究进展
陈润华1, 戴永祺1, 张建业2, 李方德2, 鲁艳军1,*
1 深圳大学机电与控制工程学院,广东 深圳 518060
2 广州医科大学药学院,广东省分子靶标与临床药理学重点实验室,广州 511436
Research Progress of SARS-CoV-2 Detection Based on Microfluidic Chip
CHEN Runhua1, DAI Yongqi1, ZHANG Jianye2, LI Fangde2, LU Yanjun1,*
1 College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China
2 Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
下载:  全 文 ( PDF ) ( 54545KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 微流控芯片是集成化、高通量、低成本、便携式的生物分析检测工具,近年来在新型冠状病毒(SARS-CoV-2)检测中备受关注。本文综述了微流控芯片及其系统在SARS-CoV-2检测中的最新进展,介绍并对比了微流控芯片的制备材料和成型工艺,着重阐述了基于微流控芯片的核酸分子检测、血清学检测和即时检测(POCT)技术的应用研究进展,为检测方法的创新设计和芯片制备提供参考。将现有生物检测技术与微流控设备有效结合,可以实现SARS-CoV-2的高效、灵敏和准确检测,基于微流控芯片的病毒检测方法呈现出多样化、集成化的特点,是传统病毒检测方法的有效替代方案。本文探讨了各种检测技术的适用性和现有挑战,将帮助学者开展更为广泛深入的生物医学分析检测研究,深化认识先进检测技术与微流控技术的发展前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈润华
戴永祺
张建业
李方德
鲁艳军
关键词:  微流控芯片  聚合物  SARS-CoV-2  核酸检测  POCT    
Abstract: Regarded as an integrated, high-through put and low-cost biological analysis and detection tool, microfluidic chip has attracted much attention in the detection of SARS-CoV-2 in recent years. Firstly, the latest progress of microfluidic chip and its systems in SARS-CoV-2 testing are reviewed, and we also describe and compare the materials and preparation process of microfluidic chip. Then, we focus on detection technologies based on microfluidic chip such as nucleic acid molecular tests, serological tests and point of care tests (POCT), which provides reference value for innovative design of detection method and chip preparation. The combination of biological detection technology and microfluidics equipment could effectively realize efficient, sensitive and accurate detection of SARS-CoV-2. Virus testing methods based on microfluidic chip would be an effective alternative to the traditional virus testing method, which presents the characteristics of diversification and integration. Lastly, the applicability and current challenges of various detection technologies are also discussed, which would help scholars to carry out more extensive and in-depth biomedical analysis and detection research and deepen their understanding of the development prospects of advanced detection technologies and microfluidic technologies.
Key words:  microfluidic chip    polymer    SARS-CoV-2    nucleic acid test    POCT
出版日期:  2024-06-25      发布日期:  2024-07-17
ZTFLH:  Q819  
  TB30  
基金资助: 国家自然科学基金(51805334);广东省科技计划项目(2022A0505050080)
通讯作者:  *鲁艳军,深圳大学机电与控制工程学院长聘副教授、硕士研究生导师。2015年6月在华南理工大学机械制造及其自动化专业取得博士学位。主要研究方向为精密/超精密加工工艺与装备、微纳结构加工、微流控芯片制造等。主持和完成国家自然科学基金、中国博士后科学基金、广东省科技计划项目、深圳市技术攻关重点项目等20余项,在International Journal of Machine Tools and Manufacture、《机械工程学报》等期刊发表学术论文20余篇,获授权发明专利20项。luyanjun@szu.edu.cn;luyanjun_szu@163.com   
作者简介:  陈润华,现为深圳大学机电与控制工程学院硕士研究生,2021年6月在华南农业大学机械设计制造及其自动化专业取得学士学位。目前主要研究领域为微流控芯片设计与制造、微结构精密加工技术等。
引用本文:    
陈润华, 戴永祺, 张建业, 李方德, 鲁艳军. 基于微流控芯片的新型冠状病毒检测研究进展[J]. 材料导报, 2024, 38(12): 23020006-12.
CHEN Runhua, DAI Yongqi, ZHANG Jianye, LI Fangde, LU Yanjun. Research Progress of SARS-CoV-2 Detection Based on Microfluidic Chip. Materials Reports, 2024, 38(12): 23020006-12.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23020006  或          http://www.mater-rep.com/CN/Y2024/V38/I12/23020006
1 Organization W H. WHO Coronavirus (COVID-19) Dashboard. https://covid19.who.int/, 2022/5/2.
2 Wang X, Hong X, Li Y, et al. Military Medical Research, 2022, 9(1), 11.
3 Boehm E, Kronig I, Neher R A, et al. Clinical Microbiology Infection, 2021, 27(8), 1109.
4 Yang Y, Chen Y, Tang H, et al. Small Methods, 2020, 4(4), 1900451.
5 Yang S M, Lv S, Zhang W, et al. Sensors, 2022, 22(4), 1620.
6 Ren K, Zhou J, Wu H. Accounts of Chemical Research, 2013, 46(11), 2396.
7 Manz A, Graber N, Widmer H M. Sensors and Actuators B:Chemical, 1990, 1(1), 244.
8 Lai X, Lu B, Zhang P, et al. ACS Biomaterials Science and Engineering, 2019, 5(12), 6801.
9 Liao S, He Y, Chu Y, et al. Journal of Materials Chemistry A, 2019, 7(27), 16249.
10 Song Y, Hormes J, Kumar C S S R. Small, 2008, 4(6), 698.
11 Ma J, Lee S M Y, Yi C, et al. Lab on a Chip, 2017, 17(2), 209.
12 Luo Y, Zhang X, Li Y, et al. RSC Advances, 2018, 8(45), 25409.
13 Si L, Bai H, Rodas M, et al. Nature Biomedical Engineering, 2021, 5(8), 815.
14 Shi H, Jiang S, Liu B, et al. Microchemical Journal, 2021, 171, 106845.
15 Oleaga C, Bernabini C, Smith A S T, et al. Scientific Reports, 2016, 6(1), 20030.
16 Liu D, Shen H, Zhang Y, et al. Lab on a Chip, 2021, 21(10), 2019.
17 Alteri C, Cento V, Antonello M, et al. Plos One, 2020, 15(9), e236311.
18 Kang B H, Lee Y, Yu E S, et al. ACS Nano, 2021, 15(6), 10194.
19 de Oliveira K G, Estrela P F N, Mendes G D M, et al. Analyst (London), 2021, 146(4), 1178.
20 Shakeri A, Jarad N A, Leung A, et al. Advanced Materials Interfaces, 2019, 6(19), 1900940.
21 Pan L J, Tu J W, Ma H T, et al. Lab on a Chip, 2018, 18(1), 41.
22 Singh A, Malek C K, Kulkarni S K. International Journal of Nanoscience, 2010, 9(1-2), 93.
23 Nielsen J B, Hanson R L, Almughamsi H M, et al. Analytical Chemistry, 2020, 92(1), 150.
24 Niculescu A G, Chircov C, Bîrcă A C, et al. International Journal of Molecular Sciences, 2021, 22(4), 1.
25 Xie Y, Dai L, Yang Y. Biosensors and Bioelectronics:X, 2022, 10, 100109.
26 Scott S, Ali Z. Micromachines, 2021, 12(3), 319.
27 Seo J, Sakai K, Yui N. Acta Biomaterialia, 2013, 9(3), 5493.
28 Du K, Li S, Li C, et al. Acta Biomaterialia, 2021, 134, 228.
29 Tian F, Liu C, Deng J, et al. Science China Chemistry, 2020, 63(10), 1498.
30 Lee S A, Yang C. Lab On a Chip, 2014, 14(16), 3056.
31 Huh D, Matthews B D, Mammoto A, et al. Science, 2010, 328(5986), 1662.
32 Rodriguez-Mateos P, Ngamsom B, Walter C, et al. Analytica Chimica Acta, 2021, 1177, 338758.
33 Mosley O, Melling L, Tarn M D, et al. Lab On a Chip, 2016, 16(11), 2108.
34 Yang S H, Park J, Youn J R, et al. Lab On a Chip, 2018, 18(18), 2865.
35 Niculescu A, Chircov C, Bîrcă A C, et al. International Journal of Molecular Sciences, 2021, 22(4), 2011.
36 Pinto I F, Caneira C R F, Soares R R G, et al. Methods, 2017, 116, 112.
37 Mehta V, Rath S N. Bio-Design and Manufacturing, 2021, 4(2), 311.
38 Parekh D P, Collin L, Lazar P, et al. Lab On a Chip, 2016, 16(10), 1812.
39 Bezier C, Anthoine G, Charki A. International Journal of Metrology and Quality Engineering, 2020, 11, 13.
40 Filchakova O, Dossym D, Ilyas A, et al. Talanta, 2022, 244, 123409.
41 Zhang R, Gong H, Zeng X, et al. Analytical Chemistry, 2013, 85(3), 1484.
42 Ji M H, Xia Y, Loo J, et al. RSC Advances, 2020, 10(56), 34088.
43 Jiang X, Loeb J C, Manzanas C, et al. Angewandte Chemie International Edition, 2018, 57(52), 17211.
44 Chen Z, Zhu H. Journal of AIDS & Clinical Research, 2016, 07(01).
45 Augustine R, Hasan A, Das S, et al. Biology, 2020, 9(8), 182.
46 Xie Jiarui, Kou Meiling, Miao Haisheng. Animal Husbandry & Veterinary Medicine, 2021, 53(2), 119 (in Chinese).
谢佳芮, 寇美玲, 苗海生. 畜牧与兽医, 2021, 53(2), 119.
47 Lyu W Y, Zhang J, Yu Y, et al. Lab on a Chip, 2021, 21, 3086.
48 Soares R R G, Akhtar A S, Pinto I F, et al. Lab on a Chip, 2021, 21(15), 2932.
49 Huang Q, Shan X, Cao R, et al. Micromachines, 2021, 12(12), 1582.
50 Xiong H, Ye X, Li Y, et al. Analytical Chemistry, 2021, 93(9), 4270.
51 Baek Y H, Um J, Antigua K, et al. Emerging Microbes & Infections, 2020, 9(1), 998.
52 Yang M, Tang Y, Qi L, et al. Analytical Chemistry, 2021, 93(35), 11956.
53 Yang J, Hu X, Wang W, et al. Emerging Microbes & Infections, 2022, 11(1), 978.
54 Yang M, Tang Y, Qi L, et al. Analytical Chemistry, 2021, 93(35), 11956.
55 Li X, Zhao X Y, Yang W H, et al. Biotechnology and Bioengineering, 2021, 118(9), 3559.
56 Coronavirus ( COVID-19 ) Update:FDA Authorizes First COVID-19 Test for Self-Testing at Home. https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-authorizes-first-covid-19-test-self-testing-home, 2020/11/30.
57 Ganguli A, Mostafa A, Berger J, et al. Proceedings of the National Aca-demy of Sciences, 2020, 117(37), 22727.
58 Lim J, Stavins R, Kindratenko V, et al. Lab on a Chip, 2022.
59 Damhorst G L, Duarte-Guevara C, Chen W, et al. Engineering, 2015, 1(3), 324.
60 Zhang N, Li C, Dou X, et al. Critical Reviews Analyical Chemistry, 2022, 1.
61 Woo A, Jung H S, Kim D, et al. Biosensors and Bioelectronics, 2021, 182, 113167.
62 Yin K, Ding X, Li Z, et al. Lab on a Chip, 2021, 21(14), 2730.
63 Cao G, Huo D, Chen X, et al. Talanta, 2022, 248, 123594.
64 Caliendo A M, Hodinka R L. New England Journal of Medicine, 2017, 377(17), 1685.
65 Li Y, Li S Y, Wang J, et al. Trends in Biotechnology, 2019, 37(7), 730.
66 Park J S, Hsieh K, Chen L B, et al. Advance Science, 2021, 8(5).
67 Sashital D G. Genome Medicine, 2018, 10(1), 32.
68 Singh M, Bindal G, Misra C S, et al. Critical Reviews in Microbiology, 2018, 48(6), 714.
69 Gao D, Zhu X, Lu B. Journal of Medical Virology, 2021, 93(7), 4198.
70 Fozouni P, Son S M, Derby M, et al. Cell, 2021, 184(2), 323.
71 Chen Y, Zong N, Ye F, et al. Analytical Chemistry, 2022, 94(27), 9603.
72 Ramachandran A, Huyke D A, Sharma E, et al. Proceedings of the National Academy of Sciences, 2020, 117(47), 29518.
73 Ding X, Yin K, Li Z, et al. Biosensors and Bioelectronics, 2021, 184, 113218.
74 Yin J, Zou Z, Yin F, et al. ACS Nano, 2020, 14(8), 10385.
75 Broughton J P, Deng X, Yu G, et al. Nature Biotechnology, 2020, 38(7), 870.
76 Joung J, Ladha A, Saito M, et al. The New England Journal of Medicine, 2020, 383(15), 1492.
77 González-González E, Garcia-Ramirez R, Díaz-Armas G G, et al. Sensors, 2021, 21(20), 6785.
78 Lin Q, Wen D, Wu J, et al. Analytical Chemistry, 2020, 92(14), 9454.
79 Li J, Lillehoj P B. ACS Sensors, 2021, 6(3), 1270.
80 Rodriguez-Moncayo R, Cedillo-Alcantar D F, Guevara-Pantoja P E, et al. Lab on a Chip, 2021, 21(1), 93.
81 Funari R, Chu K Y, Shen A Q. Biosensors and Bioelectronics, 2020, 169, 112578.
82 Gong F, Wei H X, Qi J, et al. ACS Sensors, 2021, 6(7), 2709.
83 Zhuang J, Yin J, Lv S, et al. Biosensors and Bioelectronics, 2020, 163, 112291.
84 Chen P, Chen C, Su H, et al. Talanta, 2021, 224, 121844.
85 Park B H, Oh S J, Jung J H, et al. Biosensors and Bioelectronics, 2017, 91, 334.
86 Dignan L M, Woolf M S, Tomley C J, et al. Analytical Chemistry, 2021, 93(19), 7300.
87 Song W, Zhang T, Lin H, et al. Micromachines, 2022, 13(4), 636.
[1] 唐宁, 王延军, 赵明宇, 孙艺涵, 王晴. 偏铝酸钠对单组分地聚水泥的性能调控及水化机理[J]. 材料导报, 2024, 38(8): 22060304-6.
[2] 王志良, 陈玉龙, 申林方, 施辉盟. 偏高岭土基地聚合物对水泥固化红黏土的改善机制[J]. 材料导报, 2024, 38(8): 22080080-7.
[3] 宋学锋, 王楠. 原位合成LDHs@地聚物复合材料的矿物组成及除磷效果[J]. 材料导报, 2024, 38(8): 22110080-6.
[4] 钮政, 罗希, 徐能能, 陈刚, 乔锦丽. 聚乙烯醇基凝胶电解质的制备及在储能器件中的应用[J]. 材料导报, 2024, 38(8): 23040146-11.
[5] 刘守一, 望宇皓, 刘莉莉, 欧阳云祥, 李娜, 胡朝霞, 陈守文. 石墨相氮化碳在聚合物电解质膜中的研究进展[J]. 材料导报, 2024, 38(6): 23030250-7.
[6] 田浩正, 乔宏霞, 冯琼, 韩文文. 石粉替代率对聚合物机制砂粘结砂浆性能及微细观结构的影响[J]. 材料导报, 2024, 38(6): 22050194-7.
[7] 马彬, 黄启钦, 肖薇薇, 黄小林. 钢渣-偏高岭土基导电地聚合物的压敏性能研究[J]. 材料导报, 2024, 38(6): 22040039-6.
[8] 刘会茹, 张苗苗, 徐智策. 离子液体凝胶催化剂在合成乙酸正龙脑酯中的应用[J]. 材料导报, 2024, 38(11): 23080135-7.
[9] 刘泽, 段开瑞, 周梅, 张海波, 罗树琼, 房奎圳, 王栋民. 煤矸石在土木工程材料中的应用研究进展[J]. 材料导报, 2024, 38(10): 23050198-12.
[10] 黄怡萱, 于鹏, 周正难, 王珍高, 宁成云. 导电聚合物基抗菌复合材料的合成及生物医用研究进展[J]. 材料导报, 2023, 37(9): 21090198-9.
[11] 刘斌, 王文庆, 于知非, 汤晶, 李正心, 刘天中, 苏革. 氧化石墨烯/氧化铟/两性离子丙烯酸氟化聚合物复合膜的制备及抗牛血清白蛋白性能[J]. 材料导报, 2023, 37(4): 21010165-8.
[12] 魏铭, 张长森, 王旭, 诸华军, 焦宝祥, 孙楠. 微纳米材料改性地质聚合物的研究进展[J]. 材料导报, 2023, 37(4): 21020065-10.
[13] 刘洋, 庄蔚敏. 金属-聚合物及金属-复合材料薄壁结构压印连接技术的研究进展[J]. 材料导报, 2023, 37(3): 21110241-12.
[14] 昌姗, 崔学民, 贺艳, 苏俏俏, 窦怀远. 碳酸酐酶在地质聚合物微球表面的固定及活性表征[J]. 材料导报, 2023, 37(3): 21030043-7.
[15] 纪澄, 王璟, 孙骏宇, 安一卓. 微纳多孔聚合物基辐射冷却材料的制备、性能调控及应用[J]. 材料导报, 2023, 37(24): 22060240-14.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed