Please wait a minute...
材料导报  2025, Vol. 39 Issue (11): 24040015-6    https://doi.org/10.11896/cldb.24040015
  无机非金属及其复合材料 |
紫外老化对硫酸钙晶须改性沥青疲劳性能的影响
凡涛涛1,2,*, 韩松凯2,3, 司春棣1,2
1 石家庄铁道大学交通运输学院,石家庄 050043
2 河北省交通安全与控制重点实验室,石家庄 050043
3 石家庄铁道大学土木工程学院,石家庄 050043
Effect of Ultraviolet Aging on Fatigue Properties of Calcium Sulfate Whisker Modified Asphalt
FAN Taotao1,2,*, HAN Songkai2,3, SI Chundi1,2
1 School of Traffic and Transportation, Shijiazhuang Tiedao University, Shijiazhuang 050043, China
2 Hebei Key Laboratory of Traffic Safety and Control, Shijiazhuang 050043, China
3 School of Civil Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, China
下载:  全 文 ( PDF ) ( 15171KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 沥青受到紫外环境影响容易发生老化,从而导致沥青路面抗疲劳性能下降,影响其服役寿命。为探究硫酸钙晶须(CSW)改性沥青在紫外老化条件下的抗疲劳性能及改性机理,对基质沥青和三种不同CSW掺量(5%、10%、15%,质量分数)的改性沥青进行紫外老化模拟试验。采用线性振幅扫描试验测试各沥青试样的剪切应力、剪切应变等疲劳参数,基于黏弹连续介质损伤模型(VECD)计算紫外老化沥青的疲劳寿命。通过FTIR和SEM测定紫外老化后沥青的化学成分和相态结构变化。结果表明:紫外老化导致沥青黏弹性组分比例下降,掺入5%的CSW能提高沥青在紫外条件下的抗疲劳性能,增加其疲劳寿命;相同紫外老化条件,CSW掺量越多,沥青疲劳寿命越低,最佳CSW掺量范围为5%~10%;CSW和沥青通过物理吸附作用,形成网络骨架结构,改善沥青的抗紫外老化性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
凡涛涛
韩松凯
司春棣
关键词:  CSW改性沥青  紫外老化  疲劳性能  损伤模型  微观机理    
Abstract: Asphalt is susceptible to aging when exposed to ultraviolet radiation, leading to a reduction in fatigue resistance and service life of the pavement. To investigate the fatigue resistance and modification mechanism of calcium sulfate whiskers (CSW) modified asphalt under ultraviolet aging conditions, UV aging tests were conducted on matrix asphalt and three types of modified asphalt with varying contents (5%, 10%, 15%) of CSW. Fatigue parameters such as shear stress and shear strain were measured using linear amplitude scanning test. The fatigue life of UV aged asphalt was calculated based on the viscoelastic continuum damage model (VECD). The chemical composition and phase structure of UV aged asphalt were analyzed using FTIR and SEM tests. The results indicated that the proportion of viscoelastic components decreases due to UV aging. The addition of 5% CSW improves the fatigue resistance and extends life of asphalt under UV conditions. Furthermore, under identical UV aging conditions, the fatigue life of asphalt is influenced by the CSW content; higher CSW content leads to a lower fatigue life, with the optimal range being 5% to 10%. Physical adsorption between CSW and asphalt forms a network structure, enhancing the asphalt’s resistance to UV aging.
Key words:  CSW modified asphalt    ultraviolet aging    fatigue property    damage model    microscopic mechanism
发布日期:  2025-05-29
ZTFLH:  U416.217  
基金资助: 河北省高等学校科学技术研究项目(QN2023178);国家自然科学基金(52378455);河北省重点研发计划(21373801D)
通讯作者:  *凡涛涛,博士,石家庄铁道大学交通运输学院,讲师、硕士研究生导师。主要从事路面功能材料研发、车-环-路耦合作用下路面结构动力响应和大宗固废高值资源化与绿色低碳应用等方面的研究工作。fantaotao@stdu.edu.cn   
作者简介:  韩松凯,石家庄铁道大学土木工程学院硕士研究生,在凡涛涛老师指导下进行研究。目前主要研究领域为路面材料。
引用本文:    
凡涛涛, 韩松凯, 司春棣. 紫外老化对硫酸钙晶须改性沥青疲劳性能的影响[J]. 材料导报, 2025, 39(11): 24040015-6.
FAN Taotao, HAN Songkai, SI Chundi. Effect of Ultraviolet Aging on Fatigue Properties of Calcium Sulfate Whisker Modified Asphalt. Materials Reports, 2025, 39(11): 24040015-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24040015  或          https://www.mater-rep.com/CN/Y2025/V39/I11/24040015
1 He Y T, Zhang Y, Ye M. Highway Engineering, 2024, 49(6), 93 (in Chinese).
贺玉婷, 张毅, 叶敏. 公路工程, 2024, 49(6), 93.
2 Xie X B, Tong S J, Geng J G. Highway Engineering, 2018, 43(4), 97 (in Chinese).
谢祥兵, 童申家, 耿九光. 公路工程, 2018, 43(4), 97.
3 Zheng N X, Ji X P, Hou Y Q. Highway and Transportation Science and Technology, 2009, 26(4), 33 (in Chinese).
郑南翔, 纪小平, 侯月琴. 公路交通科技, 2009, 26(4), 33.
4 Tan Y Q, Wang J N, Feng Z L, et al. China Journal of Highway and Transportation, 2008(1), 19 (in Chinese).
谭忆秋, 王佳妮, 冯中良, 等. 中国公路学报, 2008(1), 19.
5 Liang M, Fu Z, Guo M, et al. Road Materials and Pavement Design, 2024, 25(3), 529.
6 Ju Z H, Ge D D, Xue Y H, et al. Construction and Building Materials, 2024, 411, 1.
7 Guan M Y, Guo M, Liu X, et al. Journal of Materials in Civil Engineering, 2024, 36(5), 1.
8 Meng G, Yin X, Liang M C, et al. International Journal of Pavement Engineering, 2023, 24(1), 1.
9 Chen F, Feng K, Li M, et al. Inorganic Salt Industry, 2024, 56(3), 125 (in Chinese).
陈凤, 冯康, 李铭, 等. 无机盐工业, 2024, 56(3), 125.
10 Li G Y, Li J F, Gao Y, et al. New Chemical Materials, 2017, 45(9), 235 (in Chinese).
李冠玉, 李峻峰, 高阳, 等. 化工新型材料, 2017, 45(9), 235.
11 Fan T, Si C, Gao J. Coatings, 2023, 13(10), 1.
12 Liu Y T, Yang Z L, Luo H, et al. Construction and Building Materials, 2023, 384, 1.
13 American Association of State and Highway Transportation Officials. AASHTO TP 101-12, UL, 2012.
14 Zhang X J, Tong P P, Lin X X, et al. Materials Reports, 2021, 35(18), 18083 (in Chinese).
张喜军, 仝配配, 蔺习雄, 等. 材料导报, 2021, 35(18), 18083.
15 Zhang H Y, Xu G, Chen X H, et al. Journal of Building Materials, 2020, 23(1), 168 (in Chinese).
张含宇, 徐刚, 陈先华, 等. 建筑材料学报, 2020, 23(1), 168.
16 Ashish P K, Singh D, Bohm S. Construction and Building Materials, 2016, 113, 341.
[1] 李琼, 安宝峰, 苏睿, 乔宏霞, 王超群. 废玻璃粉透水混凝土物理性能及复合胶凝体系微观机理研究[J]. 材料导报, 2025, 39(8): 23100186-11.
[2] 席晗, 孔令云. 紫外老化沥青分子构成变化及其与流变性能和化学组成的构效关系[J]. 材料导报, 2025, 39(6): 23120008-9.
[3] 张凌凯, 丁旭升, 樊培培. 新疆北部重塑性黄土的力学特性规律及微观机制试验研究[J]. 材料导报, 2025, 39(3): 23090060-10.
[4] 王剑烨, 李肖, 彭丽云, 王冬勇. EICP加固砂土的强度及应力-应变关系研究[J]. 材料导报, 2025, 39(11): 24070113-9.
[5] 梁艳玲, 霍润科, 宋战平, 穆彦虎, 秋添, 宋子羿. 基于矿物溶解理论的砂岩化学损伤动态模型[J]. 材料导报, 2024, 38(8): 22080206-7.
[6] 卢慧扬, 林金保, 刘惠民, 王炳权, 李一豪, 陈巽. 镁合金轧制边裂损伤模型的研究进展[J]. 材料导报, 2024, 38(24): 23110051-8.
[7] 刘世盟, 郭乃胜, 崔世超, 褚召阳, 赵近川. PDA/GO/PUF聚氨酯泡沫的力学与隔热性能及其微观机理[J]. 材料导报, 2024, 38(22): 23110080-9.
[8] 刘亚敏, 韩旭晖, 高晨光, 钟国亮. 全程老化沥青中温抗疲劳性能及预测模型研究[J]. 材料导报, 2024, 38(21): 23070147-6.
[9] 秦盛伟, 邸黎寅, 王连翔, 张承昊. 渗碳工艺对18CrNiMo7-6合金钢缺口件疲劳性能的影响[J]. 材料导报, 2024, 38(2): 22100180-7.
[10] 田小革, 李光耀, 陈功, 姚世林, 黄雪梅, 王俊杰, 陆劲州. TPU/Nano-ZnO复合改性沥青的性能研究及微观机制[J]. 材料导报, 2024, 38(16): 23050071-10.
[11] 关虓, 龙行, 丁莎, 张鹏鑫. 煤矸石粉混凝土冻融损伤模型与劣化机制[J]. 材料导报, 2024, 38(16): 22080144-9.
[12] 高瑞泽, 王亚强, 张金钰, 杨红艳, 刘刚, 孙军. 梯度结构金属材料的制备方法和力学性能研究进展[J]. 材料导报, 2024, 38(15): 23040269-12.
[13] 赵华, 唐杰, 刘伟男. 碳化硅沥青胶浆自愈合行为研究及最佳掺量的确定[J]. 材料导报, 2024, 38(14): 23040058-12.
[14] 朱昊, 李勇, 还大军. 短切CF/PEEK复合材料的制备及抗紫外老化性能[J]. 材料导报, 2024, 38(14): 23020237-6.
[15] 安绍都, 邵伟光, 樊桂琪, 李万利, 王建超, 杨建雄, 蔡利海. 热塑性聚氨酯耐油抗紫外老化性能改进研究[J]. 材料导报, 2024, 38(10): 23020156-5.
[1] JIN Qinglin, WANG Yang, CAO Lei, SONG Qunling. Effect of Nitriding in Mushy Zone on the Nitrogen Content and Solidification Transformation of Cr10Mn9Ni0.7 Alloy[J]. Materials Reports, 2018, 32(4): 579 -583 .
[2] WANG Shengmin, ZHAO Xiaojun, HE Mingyi. Research Status and Development of Mechanical Plating[J]. Materials Reports, 2017, 31(5): 117 -122 .
[3] HE Yuandong, SUN Changzhen, MAO Weiguo, MAO Yiqi, ZHANG Honglong, CHEN Yanfei, PEI Yongmao, FANG Daining. Measurement of Transverse Piezoelectric Coefficients of Pb(Zr0.52Ti0.48)O3 Thin Films by a Mechano-electrical Multiphysics Coupling, Bulge Test Method[J]. Materials Reports, 2017, 31(15): 139 -144 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[6] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[7] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[8] DU Min, SONG Dian, XIE Ling, ZHOU Yuxiang, LI Desheng, ZHU Jixin. Electrospinning in Rechargeable Ion Batteries for High Efficient Energy Storage[J]. Materials Reports, 2018, 32(19): 3281 -3294 .
[9] LIU Xiao, XU Qian, LAI Guanghong, GUAN Jianan, XIA Chunlei, WANG Ziming, CUI Suping. Application Performances and Mechanism of Polycarboxylic Acid in Different Comb-bonded Structures in High-performance Concrete[J]. Materials Reports, 2018, 32(22): 4011 -4015 .
[10] ZHANG Di, YANG Di, XU Cui, ZHOU Riyu, LI Hao, LI Jing, WANG Peng. Study on Mechanism of Highly Effective Adsorption of Bisphenol F by Reduced Graphene Oxide[J]. Materials Reports, 2019, 33(6): 954 -959 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed