Please wait a minute...
材料导报  2026, Vol. 40 Issue (1): 25010137-6    https://doi.org/10.11896/cldb.25010137
  金属与金属基复合材料 |
镁铋二元合金的室温变形行为研究
万宇辉1, 石凤健2,*, 霍庆欢3, 宋宏权4, 苏航5,*, 陆青松6, 匡杰1, 刘刚1, 张金钰1, 孙军1
1 西安交通大学金属材料强度全国重点实验室,西安 710049
2 江苏科技大学材料科学与工程学院,江苏 镇江 212003
3 中南大学材料科学与工程学院,长沙 410083
4 周口师范学院物理与电信工程学院,河南 周口 466001
5 中国石油集团工程材料研究院有限公司,西安 710077
6 浙江银轮机械股份有限公司,浙江 天台 317200
Study on Room Temperature Deformation Behavior of Magnesium-Bismuth Binary Alloy
WAN Yuhui1, SHI Fengjian2,*, HUO Qinghuan3, SONG Hongquan4, SU Hang5,*, LU Qingsong6, KUANG Jie1, LIU Gang1, ZHANG Jinyu1, SUN Jun1
1 State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
2 School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, China
3 School of Materials Science and Engineering, Central South University, Changsha 410083, China
4 School of Physical and Telecommunication Engineering, Zhoukou Normal University, Zhoukou 466001, Henan, China
5 CNPC Tubular Goods Research Institute, Xi'an 710077, China
6 Zhejiang Yinlun Machinery Co., Ltd., Tiantai 317200, Zhejiang, China
下载:  全 文 ( PDF ) ( 22774KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 由于第二相具有较高的热稳定性,Mg-Bi合金近年来在镁合金研究领域引起了一些关注。本工作使用基于扫描电镜(SEM)和电子背散射衍射(EBSD)的准原位拉伸技术,结合晶体塑性有限元模拟和第一性原理计算探索了Mg-Bi二元合金的室温塑性变形行为。结果表明,在具有接近的晶粒尺寸和织构的情况下,与纯Mg相比,Mg-Bi合金展现出更为优异的室温力学性能匹配。分析显示这主要源于元素Bi的加入降低了材料中非基面滑移系的广义层错能,提高了材料中锥面滑移的活跃程度。这一变形机制上的改变使得Mg-Bi二元合金在相较于纯镁强度提升1.4倍的同时仍然能够保持几乎相同的延伸率。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
万宇辉
石凤健
霍庆欢
宋宏权
苏航
陆青松
匡杰
刘刚
张金钰
孙军
关键词:  Mg-Bi合金  变形机制  滑移迹线  广义层错能    
Abstract: Due to the high thermal stability of its second phase, Mg-Bi alloy have attracted some attention in the field of magnesium alloys research in recent years. In this work, quasi-in-situ tensile tests based on scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD) were conducted, combined with crystal plasticity finite element simulation and first-principles calculations to explore the room-temperature plastic deformation behavior of Mg-Bi binary alloy. The results show that, under the condition of similar grain size and texture, Mg-Bi alloy exhibits superior room-temperature mechanical properties matching compared to pure Mg. Analysis indicate it is mainly due to the addition of element Bi, which reduce the generalized stacking fault energy of non-basal slip systems in the material and increase the activity of prismatic slip. This change causes the Mg-Bi alloy's strength increasing by 1.4 times compared to pure Mg's while maintaining almost the same elongation rate.
Key words:  Mg-Bi alloy    deformation mechanism    slip trace    generalized fault energy
出版日期:  2026-01-10      发布日期:  2026-01-09
ZTFLH:  TG146.2  
基金资助: 国家自然科学基金(52371119)
通讯作者:  * 石凤健,江苏科技大学材料科学与工程学院副教授、硕士研究生导师。目前主要从事材料先进成形技术、镁合金塑性加工等方面的研究。shifengjian@126.com
苏航,中国石油天然气集团公司管材研究所高级工程师。长期从事金属材料强韧化、金属材料的氢脆及机器学习在金属材料表征方面的研究。suhang12@cnpc.com.cn   
作者简介:  万宇辉,西安交通大学材料科学与工程学院硕士研究生。目前主要研究领域为金属材料塑性加工与强韧化。
引用本文:    
万宇辉, 石凤健, 霍庆欢, 宋宏权, 苏航, 陆青松, 匡杰, 刘刚, 张金钰, 孙军. 镁铋二元合金的室温变形行为研究[J]. 材料导报, 2026, 40(1): 25010137-6.
WAN Yuhui. Study on Room Temperature Deformation Behavior of Magnesium-Bismuth Binary Alloy. Materials Reports, 2026, 40(1): 25010137-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.25010137  或          https://www.mater-rep.com/CN/Y2026/V40/I1/25010137
1 Froes F H, Eliezer D, Aghion E. Journal of Operations Management, 1998, 50, 30.
2 Yoo M H. Metallurgical Transactions A, 1981, 12(3), 409.
3 Khosravani A, Fullwood D T, Adams B L, et al. Acta Materialia, 2015, 100, 202.
4 Imandoust A, Barrett C D, Al-Samman T, et al. Journal of Materials Science, 2017, 52, 1.
5 Sandlöbes S, Zaefferer S, Schestakow I, et al. Acta Materialia, 2011, 59, 429.
6 Sandlöbes S, Friák M, Zaefferer S, et al. Acta Materialia, 2012, 60, 3011.
7 Kim K H, Wang J H, Jang H S, et al. Materials Science and Engineering A, 2018, 715, 266.
8 Xu J, Guan B, Xin Y C, et al. International Journal of Plasticity, 2023, 170, 103763.
9 Bu Y, Li Z, Liu J, et al. Physical Review Letters, 2019, 122, 075502.
10 Ogawa Y, Singh A, Somekawa H. Scripta Materialia, 2022, 218, 114830.
11 Sandlöbes S, Friák M, Zaefferer S, et al. Acta Materialia, 2012, 60, 30111.
12 Sandlöbes S, Pei Z, Friák M, et al. Acta Materialia, 2014, 70, 92.
13 Wu Z, Ahmad R, Yin B, et al. Science, 2018, 359, 447.
14 Kuang J, Thaddeus S E L, Stephen R N, et al. International Journal of Plasticity, 2016, 87, 86.
15 Go J, Lee J U, Yu H, et al. Journal of Materials Science & Technology, 2020, 44, 62.
16 Liu M J, Sun M, Li J H, et al. Nonferrous Metal Materials and Engineering, 2020, 41(4), 39.
17 Cha J W, Jin S C, Jung J G, et al. Journal of Magnesium and Alloys, 2022, 10, 2833.
18 Xiao Z, Xu S, Huang W, et al. Journal of Materials Science & Technology, 2024, 201, 166.
19 Sasaki T T, Ohkubo T, Hono K. Acta Materialia, 2009, 57, 3529.
20 Yu H, Fan S D, Meng S J, et al. Journal of Magnesium and Alloys, 2021, 9, 983.
21 Somekawa H, Singh A, Sahara R, et al. Scientific Reports, 2018, 8(1), 104406.
22 Zhang Y Q, Cheng W L, Yu H, et al. Journal of Materials Science & Technology, 2022, 105, 274.
23 Liu S, Xia D, Yang H, et al. International Journal of Plasticity, 2022, 157, 103371.
24 Sun J, Jina L, Dong J, et al. International Journal of Plasticity, 2019, 123, 121.
25 Zhou B, Li Y, Wang L, et al. Acta Materialia, 2022, 227, 117662.
26 Zhou B, Wang L, Jin P, et al. International Journal of Plasticity, 2020, 128, 102669.
27 Yaghoobi M, Ganesan S, Sundar S, et al. Computational Materials Science, 2019, 169, 109078.
28 Kuang J, Zhang D, Zhang Y, et al. Scripta Materialia, 2024, 242, 115903.
29 Kuang J, Zhao X, Du X, et al. Materials Research Letters, 2023, 11(6), 430.
30 Choi S W, Won J W, Lee S, et al. Materials Science and Engineering A, 2018, 738, 75.
31 Kumar A, Kumar M A, Beyerlein I J. Scientific Reports, 2017, 7(1), 8932.
32 Kwasniak P, Garbacz H, Kurzydlowski K J. Acta Materialia, 2016, 102, 304.
33 Zhu G M, Wang L Y, Zhou H, et al. International Journal of Plasticity, 2019, 120, 164.
34 Pei Z, Li R. Computational Materials Science, 2017, 133, 1.
35 Muzyk M, Pakiela Z, Kurzydlowski K. Scripta Materialia, 2012, 66(5), 219.
[1] 周彤彤, 吕德超, 曹铁山, 程从前, 赵杰. 超超临界奥氏体耐热钢在循环载荷下的高温变形特性[J]. 材料导报, 2025, 39(23): 24110167-6.
[2] 柯松, 陈卓坤, 艾诚, 李尧, 虢婷, 孙志平. 非晶合金薄膜的复合强韧化研究进展[J]. 材料导报, 2024, 38(5): 22090022-9.
[3] 付璐, 赵晏, 任帅, 孙智妍, 赵英利, 张中武. 横纵轧对低合金高强度钢夹杂物变形行为和低温韧性的影响[J]. 材料导报, 2024, 38(17): 23020218-6.
[4] 张子瑜, 刘艳芳, 李玉胜, 曹阳. 高压扭转变形诱导的非均匀微观结构演化[J]. 材料导报, 2023, 37(23): 22050212-10.
[5] 王庆娟, 党雪, 杜忠泽, 王钦仁, 何泽恩, 齐泽江. B92SiQL钢的高温流变行为及变形机制研究[J]. 材料导报, 2023, 37(21): 22040403-8.
[6] 孙建, 黄贞益, 李景辉, 王萍, 吴旭明. 基于加工硬化率的新型轻质钢动态再结晶临界条件及变形机制研究[J]. 材料导报, 2022, 36(19): 21050251-9.
[7] 杨家坤, 包翔云, 张金钰, 刘刚, 孙军. 亚稳β钛合金的设计方法及室温变形机制的研究进展[J]. 材料导报, 2021, 35(19): 19170-19180.
[8] 王睿鑫, 唐宇, 李顺, 白书欣. 高熵合金动态载荷下变形机制的研究进展[J]. 材料导报, 2021, 35(17): 17001-17009.
[9] 屈鹏飞, 杨文超, 岳全召, 曹凯莉, 刘林. 镍基高温合金微孪晶形成机制的研究进展[J]. 材料导报, 2019, 33(23): 3971-3978.
[10] 肖罡, 卜晓兵, 杨钦文, 杨旭静, 冯江华. 高锰Hadfield钢单向拉伸变形及断裂行为研究[J]. 材料导报, 2019, 33(22): 3811-3814.
[11] 刘春泉,彭其春,薛正良,吴腾. Fe-Mn-Al-C系列低密度高强钢的研究现状[J]. 材料导报, 2019, 33(15): 2572-2581.
[12] 唐昌平, 左国良, 刘文辉, 朱美韵, 李志云, 李权, 刘筱, 卢立伟. 挤压-T5态Mg-8Gd-4Y-Nd-Zr合金的动态冲击行为[J]. 《材料导报》期刊社, 2018, 32(14): 2437-2441.
[13] 曹秀中, 赵冰, 韩秀全, 侯红亮, 曲海涛. 连续SiC纤维增强钛基复合材料横向高温变形机理研究*[J]. 《材料导报》期刊社, 2017, 31(8): 88-93.
[14] 魏力民, 杨权, 程义, 谭舒平. Ni-25Cr-20Co合金时效组织结构及性能研究[J]. 《材料导报》期刊社, 2017, 31(16): 107-111.
[1] ZHU Xueliang, WEI Zhiqiang, BAI Junshan, ZHAO Wenhua, FENG Wangjun, JIANG Jinlong. Preparation and Characterization of Carbon-encapsulated Cobalt (Ⅱ)Oxide Nanoparticles[J]. Materials Reports, 2018, 32(4): 621 -625 .
[2] ZHANG Zhongda, YANG Wenfang. Research Progress and Application of Layer-by-layer Self-assembly Technology[J]. Materials Reports, 2017, 31(5): 40 -45 .
[3] WANG Wei, YE Xiaoqiu, CHEN Chang'an, LI Qiang, JIN Wei, YANG Yongbin, GAO Tao. Research Progress on the Retention Behavior of Deuterium/Helium in Tungsten as a Plasma Facing Material[J]. Materials Reports, 2017, 31(9): 112 -117 .
[4] TANG Xu,LI Luoxing,YE Tuo,LI Rongqi,. Dynamic Flow Stress and Microstructure Evolution of 6013-T4 Aluminum Alloy at Different Temperatures[J]. Materials Reports, 2017, 31(10): 87 -91 .
[5] LIU Bowei , XU Fei, LIU Yong, YANG Yang, TANG Bing. Influences of Potassium Titanate Content on the Performance of Automobile Brake Materials[J]. Materials Reports, 2017, 31(12): 45 -51 .
[6] SHAO Mingzeng, CUI Chunjuan, YANG Hongbo. Surface Oxidation as the Modification Technique of NiTi Shape Memory Alloys for Medical Application: a Technological Review[J]. Materials Reports, 2018, 32(7): 1181 -1186 .
[7] LI Xueyun, WANG Hezhong. Optimization and Characterization of TEMPO-Mediated Oxidization of Nanochitin Whiskers[J]. Materials Reports, 2018, 32(10): 1597 -1601 .
[8] KONG Hui, LIU Weili, SONG Zhitang. An Innovative Preparation Methodology of Non-spherical Nanosize Silica Particle[J]. Materials Reports, 2018, 32(10): 1683 -1687 .
[9] YANG Fang, ZHANG Long, YU Kun, QI Tianjiao, GUAN Debin. Recent Advances in Humidity Sensitivity of Graphene[J]. Materials Reports, 2018, 32(17): 2940 -2948 .
[10] DENG Anzhong, LI Fengkai. Research Progress on Damping Properties of Sandwich Composite[J]. Materials Reports, 2017, 31(9): 165 -171 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed