Please wait a minute...
材料导报  2026, Vol. 40 Issue (1): 25010139-11    https://doi.org/10.11896/cldb.25010139
  金属与金属基复合材料 |
轻水反应堆环境对不锈钢辐照促进应力腐蚀开裂的影响综述
徐超亮1,2,4, 全琪炜2,4, 武焕春2,4, 李远飞2,4, 贾文清2,4, 尹建2,4, 李时磊3, 宋淼1, 张乐福1, 刘向兵2,4,*, 郭相龙1,*
1 上海交通大学核科学与工程学院,上海 200240
2 苏州热工研究院有限公司材料工程技术中心,江苏 苏州 215004
3 北京科技大学新金属材料国家重点实验室,北京 100083
4 国家核电厂安全及可靠性工程技术研究中心,江苏 苏州 215004
Review of the Effect of Irradiation-Assisted Stress Corrosion Cracking on Stainless Steel in Light Water Reactor Environments
XU Chaoliang1,2,4, QUAN Qiwei2,4, WU Huanchun2,4, LI Yuanfei2,4, JIA Wenqing2,4, YIN Jian2,4, LI Shilei3, SONG Miao1, ZHANG Lefu1, LIU Xiangbing2,4,*, GUO Xianglong1,*
1 School of Nuclear Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
2 Material Engineering Center, Suzhou Nuclear Power Research Institute Co., Ltd., Suzhou 215004, Jiangsu, China
3 State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
4 National Engineering Research Center for Nuclear Power Plant Safety & Reliability, Suzhou 215004, Jiangsu, China
下载:  全 文 ( PDF ) ( 18761KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 轻水反应堆(LWR)堆内构件等不锈钢材料服役在高温、强辐照和反应堆一回路水耦合环境下,辐照促进应力腐蚀开裂(IASCC)是其最主要的失效机制,导致了核工业界多起堆内构件部件的断裂事件。本文通过调研分析,介绍了LWR中的辐照环境,分析了LWR环境中辐照对不锈钢微观结构与硬度、微区化学元素、一回路水电化学腐蚀电位(ECP)、温度和应力的影响,继而总结了上述影响因素对IASCC的影响规律。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐超亮
全琪炜
武焕春
李远飞
贾文清
尹建
李时磊
宋淼
张乐福
刘向兵
郭相龙
关键词:  轻水反应堆  辐照促进应力腐蚀开裂  辐照硬化  微结构演变  微区化学元素偏析  电化学腐蚀电位  应力    
Abstract: Stainless steel materials used in the internal components of light water reactors (LWRs) operate under conditions of high temperature, high irradiation,and reactor primary water environment. Irradiation-assisted stress corrosion cracking (IASCC) is the primary failure mechanism, leading to multiple fracture incidents in reactor internals. Through investigation and analysis, this summary introduces the irradiation environment in LWRs. Then an analysis is given about the impact of irradiation on the microstructure and hardness, micro-regional chemical elements, electrochemical corrosion potential (ECP) of the primary water, temperature, and stress in stainless steel. Furthermore, the influence patterns of these factors on IASCC is summarized.
Key words:  light water reactor    irradiation-assisted stress corrosion cracking    irradiation hardening    microstructure evolution    micro-regional chemical elements precipitation    electrochemical corrosion potential    stress
出版日期:  2026-01-10      发布日期:  2026-01-09
ZTFLH:  TL341  
基金资助: 国家重点研发计划(2021YFA1600903);广东省基础与应用基础研究基金(2023B1515120082);国家自然科学基金(U24B2014;U23B2072)
通讯作者:  * 刘向兵,博士,正高级工程师,主要从事反应堆结构材料辐照效应研究与反应堆部件服役安全评价。liuxbing@cgnpc.com.cn
郭相龙,博士,副教授,主要从事压水堆核结构及包壳材料腐蚀研究、压水堆及沸水堆水化学研究、第四代先进反应堆(超临界水冷堆、铅铋冷却堆、超临界二氧化碳冷却堆)包壳材料研发及腐蚀性能研究。guoxianglong@sjtu.edu.cn   
作者简介:  徐超亮,正高级工程师,上海交通大学博士研究生,主要从事反应堆结构材料辐照效应研究与反应堆结构部件寿命评价工作。
引用本文:    
徐超亮, 全琪炜, 武焕春, 李远飞, 贾文清, 尹建, 李时磊, 宋淼, 张乐福, 刘向兵, 郭相龙. 轻水反应堆环境对不锈钢辐照促进应力腐蚀开裂的影响综述[J]. 材料导报, 2026, 40(1): 25010139-11.
XU Chaoliang. Review of the Effect of Irradiation-Assisted Stress Corrosion Cracking on Stainless Steel in Light Water Reactor Environments. Materials Reports, 2026, 40(1): 25010139-11.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.25010139  或          https://www.mater-rep.com/CN/Y2026/V40/I1/25010139
1 Was G S, Ashida Y, Andresen P L. Corrosion Reviews, 2011, 29, 7.
2 International Atomic Energy Agency. Assessment and management of ageing of major nuclear power plant components important to safety: PWR vessel internals. IAEA, 2007.
3 Somville F, Gerard R, Bosch R W, et al. In: 2016 International LWR Material Reliability Conference and Exhibition. Chicago, 2016, pp. 1.
4 Qin Wei, Xu Chaoliang, Liu Xiangbing, et al. Journal of Physics: Conference Series, 2025, 2941, 012006.
5 Robert Gérard, Frédéric Somville. In: Proceedings of the 17th International Conference on Nuclear Engineering. Brussels, 2009, pp. 521.
6 Kameyama Masashi, Chigusa Naoki, Kubo Noboru, et al. Engineering, Materials Science Quarterly Journal of the Japan Welding Society, 2005, 23, 77.
7 Was G S. Fundamentals of radiation materials science-metals and alloys. Springer, USA, 2017, pp. 951.
8 Kenik E A, Busby J T. Materials Science and Engineering R, 2012, 73, 67.
9 Garner F A, Greenwood L R. In:Proceedings of the 11th International Conference on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors. 2003, pp.887.
10 Garner F A. Radiation-induced damage in austenitic structural steels used in nuclear reactors, Elsevier, USA, 2020, pp. 63.
11 Bruemmer S M, Simonen E, Scott P M, et al. Journal of Nuclear Materials, 1999, 274, 299.
12 Deng Ping, Sun Chen, Peng Qunjia, et al. Journal of Chinese Society for Corrosion and Protection, 2015, 35(6), 479 (in Chinese).
邓平, 孙晨, 彭群家, 等. 中国腐蚀与防护学报, 2015, 35(6), 479.
13 Zinkle S J, Maziasz P J, Stoller R E. Journal of Nuclear Materials, 1993, 206, 266.
14 Yu Jinnan. Radiation effects of materials, Chemical Industry Press, China, 2007, pp. 416 (in Chinese).
郁金南. 材料辐照效应, 化学工业出版社, 2007, pp. 416.
15 Chopra O K, Rao A S. Journal of Nuclear Materials, 2011, 409, 235.
16 Robertson J P, Ioka I, Rowcliffe A F, et al. In: Effects of Radiation on Materials: 18th International Symposium. Hyannis, 1999, pp. 671.
17 Seeger A K. On the theory of radiation damage and radiation hardening, Max-Planck-Institure, 1959.
18 Pokor C, Bréchet Y, Dubuisson P, et al. Journal of Nuclear Materials, 2004, 326, 30.
19 Mme Jyoti Gupta. Intergranular stress corrosion cracking of ion irradiated 304l stainless steel in PWR environment. Ph. D. Thesis, Université De Toulouse, France, 2016.
20 Lucas G E. Journal of Nuclear Materials, 1993, 206, 287.
21 Tsay K V, Maksimkin O P, Turubarova L G, et al. Journal of Nuclear Materials, 2013, 439, 148.
22 Garner F A. Radiation damage in austenitic steels, Elsevier, USA, 2012, pp. 34.
23 Konings R J M. Comprehensive nuclear materials, Elsevier, USA, 2012, pp. 1.
24 Was G, Andresen P. Corrosion, 2007, 63, 19.
25 Terachi T, Yamada T, Miyamoto T, et al. Journal of Nuclear Materials, 2012, 426(1-3), 59.
26 Zinkle S J, Was G S. Acta Materialia, 2013, 61(3), 735.
27 Stephenson K J, Was G S. Journal of Nuclear Materials, 2015, 456, 85.
28 Zhou R, West E A, Jiao Z J, et al. Journal of Nuclear Materials, 2009, 395, 11.
29 Jiao Z, Was G S. Journal of Nuclear Materials, 2010, 407, 34.
30 Jiao Z, Was G S. Journal of Nuclear Materials, 2011, 408, 246.
31 Lam N Q, Kumar A, Wiedersich H. Proceedings of the eleventh international symposium, Scottsdale, 1982, pp. 985.
32 Toyama T, Nozawa Y, Van Renterghem W, et al. Journal of Nuclear Materials, 2011, 418, 62.
33 Anthony T R. Acta Metallurgica, 1969, 17(5), 603.
34 Simonen E P, Bruemmer S M. Journal of Nuclear Materials, 1996, 239, 185.
35 Allen T R, Was G S, Kenik E A. Journal of Nuclear Materials, 1997, 244, 278.
36 Johnson R A, Lam N Q. Physical Review B, 1977, 15, 1794.
37 Konings R J M, Stoller R E. Comprehensive nuclear materials, Elsevier, USA, 2020, pp. 1.
38 Pathania. Analytical transmission electron microscopy (ATEM) characterization of stress-corrosion cracks in LWR-irradiated austenitic stainless steel core components. EPRI, 2003.
39 Pathania R S, Nelson J L. The use of proton irradiation to understand IASCC in LWR cores. EPRI, 2001.
40 Was G S, Busby J T. Use of proton irradiation to determine IASCC mechanisms in light water reactors: solute addition alloys. Electric Power Research Institute, 2003.
41 Jenssen A, Ljungberg L G, Walmsley J, et al. Corrosion, 1998, 54, 48.
42 Jiao Z, Was G S. Acta Materialia, 2011, 59, 1220.
43 Gupta J, Hure J, Tanguy B, et al. Journal of Nuclear Materials, 2018, 501, 45.
44 Kuang W J, Feng X Y, Du D H, et al. Corrosion Science, 2022, 199, 110187.
45 Swaminathan S, Sun K, Was G S. Journal of Nuclear Materials, 2023, 585, 154604.
46 Du D H, Sun K, Was G S. Corrosion Science, 2021, 193, 109902.
47 Deng P, Peng Q J, Han E H. Scientific Report, 2021, 11, 1371.
48 Yonezawa T, Fujimoto K, Nakada S, et al. In: Proc. 8th International Symposium Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors. La Grange Park, USA, 1997, pp. 823.
49 Li G F, Kaneshima Y, Shoji T. Corrosion, 2000, 56(5), 460.
50 Wang Shenkai, Feng Xinyu, Zhang Shihao, et al. In: Abstracts Collection of the 11th National Conference on Corrosion and Protection. Liaoning, 2021, pp. 1 (in Chinese).
王生凯, 冯兴宇, 张世豪, 等. 第十一届全国腐蚀与防护大会论文摘要集, 2021, pp. 1.
51 Wang Shengkai, Zhang Shihao, Xie Jiayu, et al. Acta Materialia, 2022, 241, 118408.
52 Gao Junxuan, Cao Han 1, Kuang Wenjun, et al. Journal of Chinese Society for Corrosion and Protection, 2024, 44(4), 835 (in Chinese).
高俊宣, 曹晗, 匡文军, 等. 中国腐蚀与防护学报, 2024, 44(4), 835.
53 Andresen P L, Emigh P W, Morra M M. In: NACE Corrosion. Houston, 2005, pp. NACE-05592.
54 Hashimoto N, S. Zinkle S, A. Rowcliffe A, et a. Journal of Nuclear Materials, 2000, 283-287, 528.
55 Stephenson K. The role of dislocation channeling in IASCC initiation of neutron irradiated austenitic stainless steel. Ph. D. Thesis, The University of Michigan, USA, 2016.
56 Drew Coulson Johnson. Origin and characterization of the local stress state at dislocation channel-grain boundary interaction sites and its role in irradiation assisted stress corrosion cracking. Ph. D. Thesis, University of Michigan, USA, 2020.
57 Scott P. Journal of Nuclear Materials, 1994, 211, 101.
58 Kim Y. Corrosion, 2002, 58, 208.
59 Ishigure K, Nukii T, Ono S. Journal of Nuclear Materials, 2006, 350(1), 56.
60 Justin Ryan Hesterberg. Processes responsible for the mitigation of iascc susceptibility following the post-irradiation annealing of austenitic stainless steels. Ph. D. Thesis, University of Michigan, USA, 2019.
61 Jacobs A J, Hale D A, Siegler M. Unpublished data on SCC of irradiated SS in 288 ℃ water and inert gas. GE Nuclear Energy, 1986.
62 Ljungberg L G, Atom A B B, Sweden V. Personal communication, March 1991.
63 Ashida Y, Flick A, Andresen P L, et al. In: 15th International Confe-rence on Environmental Degradation of Materials in Nuclear Power Systems-water Reactors. Colorado, 2011, pp. 1241.
64 Onchi T, Dohi K, Soneda N, et al. Journal of Nuclear Materials, 2005, 340, 219.
65 Miwa Y, Tsukada T, Tsuji H, et al. Journal of Nuclear Materials, 2002, 307-311, 347.
66 Tsukada T, Jitsukawa S, Shiba K, et al. Journal of Nuclear Materials, 1993, 207, 159.
67 Takashi Tsukada, Yukio Miwa, Shiro Jitsukawa, et al. Journal of Nuclear Materials, 2004, 329-333, 657.
68 Andresen P L. Corrosion, 1993, 49 (9), 714.
69 Zhu Ruolin, Zhang Litao, Wang Jianqiu, et al. Journal of Chinese Society for Corrosion and Protection, 2018, 38(1), 54 (in Chinese).
朱若林, 张利涛, 王俭秋, 等. 中国腐蚀与防护学报, 2018, 38(1), 54.
70 McMurtrey M D, Cui B, Robertson I, et al. Current Opinion in Solid State and Materials Science, 2015, 19, 305.
71 Mo-Rigen He, Drew C. Johnson, Gary S. Was, et al. Acta Materialia, 2017, 138, 61.
72 Evrard P, Sauzay M. Journal of Nuclear Materials, 2010, 405(2), 83.
73 Deng Ping. Irradiation assisted corrosion and stress corrosion of nuclear-grade 304 stainless steel in high temperature and high pressure water. Ph. D. Thesis, University of Science and Technology of China, China, 2018 (in Chinese).
邓平. 核级304不锈钢辐照促进高温高压水环境腐蚀与应力腐蚀研究. 博士学位论文, 中国科学技术大学. 2018.
74 Garner F, Simonen E, Oliver B, et al. Journal of Nuclear Materials, 2006, 356, 122.
75 Allen T, Cole J, Trybus C, et al. Journal of Nuclear Materials, 2006, 348, 148.
76 Garner F, Toloczko M, Sencer B. Journal of Nuclear Materials, 2000, 276, 123.
77 Neustroev V, Garner F. Journal of Nuclear Materials, 2009, 386-388, 157.
78 Chung H. Assessment of void swelling in austenitic stainless steel core internals, Argonne National Laboratory, 2006.
79 Heald P T, Speight M V. Philosophical Magazine, 1974, 29(5), 1075.
80 Brailsford A D, Bullough R. Philosophical Magazine, 1973, 27(1), 49.
81 Malcolm Griffiths. Materials, 2021, 14, 2622.
82 Was G S, Ashida Y, Andresen P L. Corrosion Reviews, 2011, 29, 7.
83 Warren Bilanin. BWRVIP-45: BWR vessel and internals project weldability of irradiated LWR structural components. EPRI, 1997.
84 Brager H R, Straalsund J L. Journal of Nuclear Materials, 1973, 46(2), 134.
85 Ullmaier H. Radiation Effects, 1983, 78(1-4), 1.
86 By S, Li M L, Grossbeck Z, et al. Welding Journal, 2011, 90(1), 19.
87 West E A, Was G S. Journal of Nuclear Materials, 2011, 408, 142.
88 Johnson D C, Kuhr B, Farkas D, et al. Acta Materialia, 2019, 170, 166.
89 Tang H T. Materials reliability program: PWR internals material aging degradation mechanism screening, and threshold values (MRP-175), EPRI, 2005.
90 Faïza Sefta. Proposed revision of the IASCC sensitivity criterion(H-B60-2015-00404-EN). Materials aging institute. 2015.
91 Was G S, Gussev M N, Rosseel T M. Developing a mechanistic understanding of irradiation-assisted stress corrosion crack initiation. lwrs news letter. 2020.
92 中国核能行业协会. 离子辐照模拟中子辐照损伤实验研究的技术指南(T/CNEA 180-2024), 2024.
93 ASTM. Standard practice for investigating the effects of neutron radiation damage using charged-particle irradiation(ASTM E521-16), 2016.
[1] 赵甲正, 张深根, 王健, 李俊, 罗丰华. 金属异质结构材料:分类、强韧化机制与发展趋势[J]. 材料导报, 2026, 40(1): 25020015-16.
[2] 陈洋, 李增祎, 吴智, 邓承继, 娄晓明, 李勇庆, 谭嘉琳, 丁军, 余超. 催化剂添加量和温度对催化氮化制备低碳MgO-C耐火材料显微结构演变的影响[J]. 材料导报, 2025, 39(8): 24030031-5.
[3] 李涛, 吕国强, 李遇贤, 钱益超, 张杰. 光伏单晶硅片冲洗过程中应力分布的研究[J]. 材料导报, 2025, 39(7): 24010045-7.
[4] 姜彦杰, 刘浩天, 刘海峰, 车佳玲, 杨维武. 硫酸盐冻融后沙漠砂混凝土单轴受压力学性能试验研究[J]. 材料导报, 2025, 39(7): 23110222-11.
[5] 杜刚, 李亮, 王子晨, 吴俊, 杜修力. 碳纤维混凝土高温冷却后动态压缩性能试验研究[J]. 材料导报, 2025, 39(6): 24010268-6.
[6] 张昌青, 马东东, 谷怀壮, 王栋, 刘恩荣, 张鹏省. 1060-H24纯铝无轴肩微型搅拌摩擦焊的数值模拟分析[J]. 材料导报, 2025, 39(5): 24020082-6.
[7] 姚未怡, 卜恒勇. 轧制态7050铝合金双道次热变形微观组织演变[J]. 材料导报, 2025, 39(4): 23120032-8.
[8] 孙海宽, 甘德清, 刘志义, 薛振林. 水-压-应力波作用下磁铁石英岩动态损伤演化与损伤模型[J]. 材料导报, 2025, 39(24): 24050143-8.
[9] 黄凯, 尹颢, 邓中正. 梯度纳米晶增强NiTi合金悬臂梁弯曲疲劳寿命[J]. 材料导报, 2025, 39(24): 24110203-7.
[10] 周彤彤, 吕德超, 曹铁山, 程从前, 赵杰. 超超临界奥氏体耐热钢在循环载荷下的高温变形特性[J]. 材料导报, 2025, 39(23): 24110167-6.
[11] 敬宇, 李文凯, 仵翱奇, 石燕栋, 石磊, 苏旭明. 单/双激光选区激光熔化工艺对AlSi10Mg合金的超高周疲劳行为影响的研究[J]. 材料导报, 2025, 39(22): 24110038-6.
[12] 巩晓乐, 赵红运, 陈吉华, 严红革. 基于生物医用镁合金的腐蚀行为及其影响因素[J]. 材料导报, 2025, 39(21): 24100045-12.
[13] 单志龙, 侯福金, 梅波, 刘庆阳, 张守祺, 张云升, 路振宝. 混凝土桥梁预应力钢筋锈蚀的研究进展[J]. 材料导报, 2025, 39(20): 24110151-11.
[14] 王一帆, 王昆, 陈南梁. 基于拉挤工艺的棒型CFRP的结构与应用研究进展[J]. 材料导报, 2025, 39(20): 24090244-12.
[15] 徐照英, 苏永要, 张腾飞, 王锦标, 吴杰. 钛合金表面硅铜共掺杂类金刚石复合薄膜微观结构与摩擦学性能研究[J]. 材料导报, 2025, 39(19): 24080234-6.
[1] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
[2] ZHAO Yipeng, LIANG Yi, FENG Hutian, ZHANG Limin, XU Bin. Experimental Study on Wear Characteristics and Wear Mechanism of Rolling Linear Guide[J]. Materials Reports, 2018, 32(6): 915 -923 .
[3] ZHU Xueliang, WEI Zhiqiang, BAI Junshan, ZHAO Wenhua, FENG Wangjun, JIANG Jinlong. Preparation and Characterization of Carbon-encapsulated Cobalt (Ⅱ)Oxide Nanoparticles[J]. Materials Reports, 2018, 32(4): 621 -625 .
[4] ZHAO Lun, HE Xiaocong, ZHANG Xianlian, ZHANG Long, CHENG Qiang. Fretting Wear Mechanisms of Single Lap Self-piercing Riveted Joint in TA1 Titanium Alloy[J]. Materials Reports, 2017, 31(2): 73 -76 .
[5] DING Xueming, ZHOU Suhong, YE Bing, JIANG Haiyan,
WANG Qudong, DING Wenjiang. Application and Research Status of Zn-Cu-Ti Alloy[J]. Materials Reports, 2017, 31(3): 38 -43 .
[6] ZHANG Zhongda, YANG Wenfang. Research Progress and Application of Layer-by-layer Self-assembly Technology[J]. Materials Reports, 2017, 31(5): 40 -45 .
[7] CUI Yuhu, WANG Qi, GOU Guangjun, JIANG Man, ZHOU Zuowan, ZHANG Shengli, FU Jinli. Advances in Catalytic Degradation Liquefaction of Lignin[J]. Materials Reports, 2017, 31(5): 112 -116 .
[8] CAO Xiuzhong, ZHAO Bing, HAN Xiuquan, HOU Hongliang, QU Haitao. Research on Deformation Mechanism of SiC Fiber Reinforced Titanium Matrix Composites Subjected to High Temperature Axial Tension[J]. Materials Reports, 2017, 31(8): 88 -93 .
[9] ZHANG Lina, SU Qi, YANG Gaoling, LIU Baixiong, YANG Bin. Review on Controlled-synthesis and Functional Application of Nano-WO3 Based Materials[J]. Materials Reports, 2017, 31(11): 20 -28 .
[10] ZHANG Junzhan, ZHANG Haisheng, ZHANG Ying, HE Hui. Research Developments in the Preparation of Silicon Oxycarbide Porous Ceramics via Pyrolytic Ceramization of Polysiloxanes[J]. Materials Reports, 2017, 31(19): 91 -96 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed