Abstract: The high temperature deformation characteristics of HR3C austenitic heat-resistant steel in ultra-supercritical power plant boiler were studied under the temperature range of 948—998 K, mean stress of 200—240 MPa and stress amplitude of 0—130 MPa. The deformation mechanism and fracture behavior of HR3C steel under high-temperature cyclic loading were elucidated. The results show that with the increasing of temperature, mean stress and stress amplitude, the minimum strain rate of HR3C steel under cyclic loading increases, and the life gradually decreases. According to the minimum strain rate characteristics, the apparent stress exponents of the sample under cyclic loading are 3.30, 4.47, 5.03, and the apparent activation energy is 460—520 kJ/mol at 948, 973 and 998 K. By extrapolation method, the threshold stresses at different temperatures was estimated to be 89, 73 and 23 MPa, respectively. By introducing threshold stresses, the true stress exponent is 3 and the true activation energy is 275—315 kJ/mol. The deformation mechanism of HR3C steel under cyclic loading is the creep deformation controlled by dislocation slip assisted by lattice diffusion. At the same time, the cumulative damage strain εd was used to modify the M-G relationship to achieve life prediction. Under constant load and cyclic load, the fracture mode of HR3C steel is ductile fracture dominated by intergranular fracture. There are a few transcrystalline cracks in the fracture morphology under cyclic loading.
1 Li Q. Journal of Coal Science & Technology, 2021, 8, 1197. 2 Luo J S. Boiler Technology, 2023, 54(6), 8 (in Chinese). 罗建松. 锅炉技术, 2023, 54(6), 8. 3 Wang J, Duan L Q, Yang M. Journal of Mechanical Engineering, 2022, 58(22), 416 (in Chinese). 王婧, 段立强, 杨名. 机械工程学报, 2022, 58(22), 416. 4 Yu H Y, Dong J X, Xie X S. World Iron and Steel, 2010, 10(2), 42 (in Chinese). 于鸿垚, 董建新, 谢锡善. 世界钢铁, 2010, 10(2), 42. 5 Feng F, Wang M L, Li Z H, et al. Materials Reports, 2021, 35(9), 9186 (in Chinese). 封帆, 王美玲, 李振华, 等. 材料导报, 2021, 35(9), 9186. 6 Xu H, Li Y P, Fang X D, et al. Hot Working Technology, 2017, 3(6), 107 (in Chinese). 许航, 李玉平, 方旭东, 等. 热加工工艺, 2017, 3(6), 107. 7 Wang X, Wan X, Liu Y, et al. Fatigue & Fracture of Engineering Materials & Structures, 2023, 46, 2017. 8 Chen X H, Liu S J, Tian Y S, et al. European Journal of Mechanics-A/Solids, 2023, 97, 104855. 9 He J J, Sandström R, Vujic S. Procedia Structural Integrity, 2016, 2, 871. 10 Sarkar A, Nagesha A, Parameswaran P, et al. Philosophical Magazine, 2015, 95, 3950. 11 Li H Z, Jing H Y, Xu L Y, et al. International Journal of Fatigue, 2019, 119, 20. 12 Fang X D, Wang Y, Fan G W, et al. Journal of Materials Engineering, 2017, 45(6), 112 (in Chinese). 方旭东, 王岩, 范光伟, 等. 材料工程, 2017, 45(6), 112. 13 Wang Q B, Xin R S, Wang Z C, et al. Journal of Manufacturing Processes, 2022, 82, 792. 14 Xu S K, Wang K J, Xu C, et al. Mechanical Research Application, 2024, 37(5), 182 (in Chinese). 许少坤, 王克俭, 徐驰, 等. 机械研究与应用, 2024, 37(5), 182. 15 Sui Y H, Zhang X Z, Xu D F. Mechanics of Solids, 2021, 56, 761. 16 Yaguchi M. Materials at High Temperatures, 2024, 41, 274. 17 Yadav H K, Ballal A R, Thawre M M, et al. Materials Research Express, 2020, 7, 016580. 18 Zhang Y, Jing H Y, Xu L Y, et al. Materials Science and Engineering:A, 2017, 686, 102. 19 Park D B, Hong S M, Lee K H, et al. Materials Characterization, 2014, 93, 52. 20 Meng L J, Xing H, Pang G W, et al. Atom Energy Science Technology, 2009, 43(6), 509 (in Chinese). 孟丽君, 邢辉, 庞淦文, 等. 原子能科学技术, 2009, 43(6), 509. 21 McQueen H J, Ryan N D. Materials Science and Engineering:A, 2002, 322, 43. 22 Meng L J, Sun J, Xing H. Journal of Nuclear Materials, 2012, 427, 116. 23 Reyes-Calderón F, Mejía I, Cabrera J M. Materials Science and Enginee-ring:A, 2013, 562, 46. 24 Wang S, Luo J R, Hou L G, et al. Materials & Design, 2017, 113, 27. 25 Sakthivel T, Selvi S P, Laha K. Materials Science and Engineering:A, 2015, 640, 61. 26 Nhon Q V, Christian H L, Michael J S, et al. Acta Materialia, 2014, 71, 89. 27 Zhang X Z, Wu X J, Liu R, et al. Materials Science and Engineering:A, 2017, 689, 345. 28 Spigarelli S. International Journal Pressure Vessels and Piping, 2013, 101, 64. 29 Lyu D C, Cao T S, Zhou T T, et al. Metallurgical and Materials Tran-sactions A, 2022, 53, 1738. 30 Zhang J S. Material strength science, Harbin Institute of Technology Press, China, 2004, pp. 131 (in Chinese). 张俊善. 材料强度学, 哈尔滨工业大学出版社, 2004, pp. 131. 31 Li H Z, Jing H Y, Xu L Y, et al. International Journal of Plasticity, 2019, 116, 91. 32 Wang R, Duan M, Zhang J, et al. Journal of Materials Engineering and Performance, 2021, 30, 4552.