Please wait a minute...
材料导报  2025, Vol. 39 Issue (23): 24110189-6    https://doi.org/10.11896/cldb.24110189
  高分子与聚合物基复合材料 |
大幅提高速生木基钠离子电池负极首次库伦效率方法的研究
王蕾1, 刘少冕1, 范凤兰1,*, 韩伟2
1 河北民族师范学院化学与化工学院,河北 承德 067000
2 河北民族师范学院物理与电子工程学院,河北 承德 067000
Study on Method to Largely Improve Initial Coulombic Efficiency of Fast Growing Wood Based Hard Carbon for Sodium Ion Battery Anodes
WANG Lei1, LIU Shaomian1, FAN Fenglan1,*, HAN Wei2
1 Department of Chemistry and Chemical Engineering, Hebei Minzu Normal University, Chengde 067000, Hebei, China
2 School of Physics and Electronic Engineering, Hebei Minzu Normal University, Chengde 067000, Hebei, China
下载:  全 文 ( PDF ) ( 9892KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 巴尔沙木是一种典型的速生木,并可以通过高温碳化制备为硬碳材料。该硬碳材料作为钠离子电池负极使用时,虽然表现出较高的比容量,但首次库伦效率(ICE)较低,为70%左右,从而限制了其作为钠离子电池负极材料的进一步应用。为提高其ICE,本工作将巴尔沙木在氧化石墨水溶胶中真空浸渍处理后,再经高温热处理得到改性材料。该材料在氧化石墨的孔道覆盖和共碳化作用下,相比未改性的材料,比表面积降低,碳层间距变小,碳层堆叠结构更加有序,最终实现了首次库伦效率的大幅度提升(电流密度20 mA·g-1下为86.9%,电流密度1 A·g-1下为96.6%)。同时,改性后的巴尔沙木基硬碳在容量上也表现出了更优的性能:0.1 A·g-1电流密度下,容量达到约314 mAh·g-1;1 A·g-1电流密度下充放电循环500次后,容量高于240 mAh·g-1,具有很好的应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王蕾
刘少冕
范凤兰
韩伟
关键词:  速生木  氧化石墨水溶胶  硬碳  钠离子电池  电化学性能    
Abstract: As a kind of typical fast growing wood, balsa wood can be used to prepare hard carbon by high temperature carbonization. Although the obtained hard carbon has high specific capacities when using as sodium ion battery anodes, its initial coulombic efficiency (ICE) is just about 70%, which limits it’s further application. In order to increase ICE, the raw balsa wood was impregnated with graphite oxide hydrosol under vacuum and then treated with high temperature. Owing to pores’ covering and co-carbonization with graphite oxide, the specific surface area of balsa wood based hard carbon decreases, the carbon layers in hard carbon shows less interlayer distance and better stacking structure, which increases the ICE of balsa wood based hard carbon to be 86.9% at a current density of 20 mA·g-1 and 96.6% at a current density of 1 A·g-1. Additionally, the hard carbon modified by graphite oxide shows higher specific capacities (about 314 mAh·g-1 at a current density of 0.1 A·g-1, more than 240 mAh·g-1 at 1 A·g-1 after 500 times charge/discharge cycles) than original hard carbon, which has a very good application prospect.
Key words:  fast growing wood    graphite oxide hydrosol    hard carbon    sodium ion batteries    electrochemical performances
出版日期:  2025-12-10      发布日期:  2025-12-03
ZTFLH:  TM911  
基金资助: 河北省教育厅科学研究项目(ZC2024162);河北民族师范学院科研项目(PT2023002);河北民族师范学院博士科研启动基金项目(DR2022008)
通讯作者:  *范凤兰,博士,河北民族师范学院化学与化工学院副教授,研究方向为生物基能源材料。ffl619@163.com   
作者简介:  王蕾,硕士,河北民族师范学院化学与化工学院副教授,研究方向为新型储能材料及量子/分子动力学模拟。
引用本文:    
王蕾, 刘少冕, 范凤兰, 韩伟. 大幅提高速生木基钠离子电池负极首次库伦效率方法的研究[J]. 材料导报, 2025, 39(23): 24110189-6.
WANG Lei, LIU Shaomian, FAN Fenglan, HAN Wei. Study on Method to Largely Improve Initial Coulombic Efficiency of Fast Growing Wood Based Hard Carbon for Sodium Ion Battery Anodes. Materials Reports, 2025, 39(23): 24110189-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24110189  或          https://www.mater-rep.com/CN/Y2025/V39/I23/24110189
1 Kuai J, Xie J, Wang J D, et al. Chemical Physics Letters, 2024, 842, 141214.
2 Yan B, Han C, Dai Y, et al. Fuel, 2024, 371, 132141.
3 Nakabayashi K, Yi H, Ryu D Y, et al. Chemistry Letters, 2019, 48, 753.
4 Tang J J, Li X Y, Chen Y Q, et al. Materials Reports, 2024, 38 (15), 23040228(in Chinese).
唐晶晶, 李晓滢, 陈言蹊, 等. 材料导报, 2024, 38 (15), 23040228.
5 Tyagaraj H B, Marje S J, Ranjith K S, et al. Journal of Energy Storage, 2023, 74, 109411.
6 Ba D, Gui Q, Liu W, et al. Nano Energy, 2022, 94, 106918.
7 Cheng F, Cao M, Li Q, et al. ACS Nano, 2023, 17(18), 18608.
8 Chen Y X, Shan X L, Wu J T, et al. Materials Research and Application, 2024, 18(6), 901(in Chinese).
陈永鑫, 单晓龙, 吴江涛, 等. 材料研究与应用, 2024, 18(6), 901.
9 Brunauer S, Emmett P H, Teller E. Journal of the Americal Chemical Society, 1938, 60 (2), 309.
10 Jagiello J, Kenvin J, Celzard A, et al. Carbon, 2019, 144, 206.
11 Jagiello J, Olivier J P. Carbon, 2013, 55, 70.
12 Hanwell M D, Curtis D E, Lonie D C, et al. Journal of Cheminformatics, 2012, 4, 17.
13 Neese F. WIREs Computational Molecular Science, 2012, 2(1), 73.
14 Neese F. WIREs Computational Molecular Science, 2022, 12(5), e1606.
15 Lu T, Chen F. Journal of Computational Chemistry, 2012, 33(5), 580.
16 Humphrey W, Dalke A, Schulten K. Journal of Molecular Graphics, 1996, 14 (1), 33.
17 Sun S, Wang L. Electronic Materials Letters, 2024, 20, 474.
18 Lindström H, Södergren S, Solbrand A, et al. The Journal of Physical Chemistry B, 1997, 101 (39), 7710.
19 Sun J G, Ye H L, Oh J A S, et al. Nano Research, 2022, 15, 2123.
20 Yang Y J, Wang L L, Wan J, et al. Functional Materials Letters, 2022, 15, 2250016.
21 Cheng M, Yang R, Zhang L, et al. Carbon, 2012, 50, 2581.
22 Sun S, Wang L, Xu H. Functional Materials Letters, 2023, 16, 2350002.
[1] 张文浩, 韩文佳, 陈安祥, 周世晋, 王晓龙, 陈仪玮, 李霞. 生物质基硬碳钠离子电池负极材料预处理研究进展[J]. 材料导报, 2025, 39(9): 24030195-12.
[2] 孙丽丽, 关宁, 王勇, 李永存. TiFe基储氢合金活化及电化学性能研究进展[J]. 材料导报, 2025, 39(4): 24010105-9.
[3] 童汇, 谢建龙, 张志谋, 郭忻, 喻万景, 郭学益, 黄承焕. 富锂锰基正极材料研究进展[J]. 材料导报, 2025, 39(3): 23080074-18.
[4] 惠功领, 张晋豪, 解炜, 辛智, 毛昳萱, 陈成猛. 预氧化在高性能钠离子电池用硬炭制备改性中发挥的作用[J]. 材料导报, 2025, 39(20): 24090241-13.
[5] 丁一丁, 陈洋羊, 卿彦. 木竹衍生硬碳材料在钠离子电池中的应用[J]. 材料导报, 2025, 39(20): 24090167-10.
[6] 李朋娟, 邹振羽, 黄鹏飞, 金鑫, 吴晓雨, 李晓丽. N/O/P共掺杂三聚氰胺基多孔碳材料的制备及储锌性能研究[J]. 材料导报, 2025, 39(2): 23100113-7.
[7] 刘冬旭, 宋皓炜, 刘鹏, 姚青荣, 王仲民, 邓健秋. 天然生物聚合物衍生硬炭材料的微观结构与储钠性能[J]. 材料导报, 2025, 39(16): 24070125-6.
[8] 肖浩, 温婧, 李菲菲, 姜涛. 焦钒酸锰酸浸液水热制备MnV2O6纳米带及其储锂性能研究[J]. 材料导报, 2025, 39(11): 24030029-6.
[9] 孙文浩, 田君, 高洪波, 刘娜, 张锟, 梁晓嫱, 王聪杰, 王浩辰. 钠离子电池关键材料的热行为研究新进展[J]. 材料导报, 2025, 39(11): 24070213-11.
[10] 刘志伟, 武婵, 遆鑫森, 刘有智. SDBS插层与吸附协同增强片状镍钴氢氧化物的电化学性能[J]. 材料导报, 2025, 39(10): 23070007-8.
[11] 王丕, 宋琛, 董东东, 曾德长, 刘太楷, 文魁, 毛杰, 刘敏. 多孔Fe24Cr金属支撑体厚度对SOFC性能的影响[J]. 材料导报, 2025, 39(1): 23110193-7.
[12] 黄留飞, 王小英, 孙耀宁, 陈亮, 王龙, 任聪聪, 杨晓珊, 王斗, 李晋锋. 激光熔化沉积AlxCoCrFeNi系高熵合金的组织与性能[J]. 材料导报, 2024, 38(6): 22090238-6.
[13] 刘亭亭, 田国兴, 赵欣, 余新勇, 毛超, 于雪寒, 陈玲. 三维网络结构镍钴氢氧化物/石墨烯水凝胶复合材料的合成及电化学性能[J]. 材料导报, 2024, 38(5): 22070064-7.
[14] 杨文秀, 王冰冰, 俞小花, 田林, 谢刚. 热分解温度对IrO2-RuO2-SnO2/Ti阳极微观形貌及性能的影响[J]. 材料导报, 2024, 38(24): 23080117-5.
[15] 俞小花, 李影, 谭皓天, 沈庆峰, 王发强, 谢刚. 十二烷基三甲基氯化铵对铝-空气电池Al-0.8Bi阳极性能的影响[J]. 材料导报, 2024, 38(23): 23070127-6.
[1] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[2] WU Wei, CHEN Shiying, ZONG Mengjingzi. Dielectric Properties and Thermal Stability of Nano-Al2O3/Polyether Sulfone-epoxy Resin Composites[J]. Materials Reports, 2017, 31(20): 21 -24 .
[3] MO Peicheng, WU Yi, YU Wenlin, WANG Jilin, ZOU Zhengguang, ZHONG Shenglin, WANG Peng. In Situ Synthesis of PcBN Composites by cBN-Ti-Al-Si and Their Mechanical Property[J]. Materials Reports, 2018, 32(14): 2355 -2359 .
[4] HU Yaoqiang, CHEN Fajin, LIU Haining, ZHANG Huifang, WU Zhijian, YE Xiushen. Preparation of Poly(N-isopropylacrylamide) Hydrogel and Its Thermally Induced Aggregation Behavior[J]. Materials Reports, 2018, 32(14): 2491 -2496 .
[5] SONG Gang, CHI Jiayu, YU Jingwei, LIU Liming. Corrosion Behavior of Mg-steel Laser-TIG Hybrid Welding Joint[J]. Materials Reports, 2018, 32(16): 2773 -2777 .
[6] HUANG Hui, HAN Jianfeng, WANG Yishun, XIA Yang, ZHANG Jun, GAN Yongping, LIANG Chu, ZHANG Wenkui. Supercritical CO2 Assisting Cladding of LiMnPO4 on the Surface of Li[Li0.2-Mn0.54Co0.13Ni0.13]O2 and Its Electrochemical Properties[J]. Materials Reports, 2018, 32(23): 4072 -4078 .
[7] WANG Zhonghui, XIN Yong. Molecular Dynamics Simulation on the Relationship of Oxygen Diffusion and Polymer Chains Activity[J]. Materials Reports, 2019, 33(8): 1293 -1297 .
[8] CHANG Jingjing. Spin Coating Epitaxial Films[J]. Materials Reports, 2019, 33(12): 1919 -1920 .
[9] ZHUANG Xiaodong, LI Rongxing, YU Xiaohua, XIE Gang, HE Xiaocai, XU Qingxin. Preparation of Lithium Titanate Electrode Materials by Solid Phase Method[J]. Materials Reports, 2019, 33(16): 2654 -2659 .
[10] BIAN Guixue, CHEN Yueliang, ZHANG Yong, WANG Andong, WANG Zhefu. Equivalent Conversion Coefficient of Aluminum/Titanium Alloy Between Acidic NaCl Solution with Different Concentration and Water Based on Galvanic Corrosion Simulation[J]. Materials Reports, 2019, 33(16): 2746 -2752 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed