Research on Hydrothermal Synthesis of MnV2O6 Nanobelts from Pyrovanadate Manganese Acid Leaching Solution and Its Lithium Storage Performance
XIAO Hao1, WEN Jing1, LI Feifei1, JIANG Tao1,2,*
1 School of Metallurgy, Northeastern University, Shenyang 110000, China 2 Key Laboratory of Ecological Metallurgy of Polymetallic Symbiotic Ores Ministry of Education, Shenyang 110000, China
Abstract: Monoclinic manganese vanadate (MnV2O6) has higher conductivity and lower charge transfer activation energy than other manganese vanadate compounds, and has become one of the more promising anode materials for lithium ion batteries. In this work, MnV2O6 nanobelts were obtained by hydrothermal reaction using manganese pyrovanadate (Mn2V2O7) acid leaching solution as raw material. The effects of vanadium concentration and hydrothermal temperature on vanadium conversion rate in hydrothermal process were studied. The phase, morphology and electrochemical properties of MnV2O6 nanobelts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical workstation. The results show that the vanadium conversion rate increases with the increase of vanadium concentration, and increases first and then decreases with the increase of hydrothermal temperature. The critical point is 180 ℃. The prepared MnV2O6 is composed of monoclinic nanobelts with a width of about 200 nm, a thickness of 15—30 nm, and a length of 3—5 μm. It has excellent rate performance and cycle life. After 200 cycles at 1C(1C=847 mA·g-1), it still maintains a high reversible capacity of 763.4 mA·h·g-1, showing good electrochemical performance.
1 Schneider K. Journal of Materials Science:Materials in Electronics, 2020, 31, 10478. 2 Xu X M, Xiong F Y, Meng J S, et al. Advanced Functional Materials, 2020, 30, 2. 3 Wen J, Jiang T, Xu Y, et al. Metallurgical and Materials Transactions B, 2018, 49, 1471. 4 Chernova N A, Roppolo M, Dillon A C, et al. Chemistry of Materials, 2009, 19, 2526. 5 Wang Y, Cao G Z. Advanced Materials, 2008, 20, 2251. 6 Cheng F Y, Chen J. Chemistry of Materials, 2011, 21, 9841. 7 Li Y W, Yao J H, Uchaker E, et al. Advanced Energy Materials, 2013, 3, 1171. 8 Zhu C. Study on the anode of high specific capacity cobalt vanadate lithium ion battery. Master’s Thesis, Nanjing University, China, 2018(in Chinese). 朱潮. 高比容钒酸钴锂离子电池负极研究. 硕士学位论文, 南京大学, 2018. 9 Zhu J, Di Z Q, Yang M E, et al. New Chemical Materials, 2019, 47(9), 134(in Chinese). 朱靖, 狄正秋, 杨梦恩, 等. 化工新型材料, 2019, 47(9), 134. 10 Miao X F, Liu Y C, Zhang X X, et al. Journal of Engineering Science, 2017, 39(3), 407(in Chinese). 苗小飞, 刘永川, 张祥昕, 等. 工程科学学报, 2017, 39(3), 407. 11 Miao X. Construction of functionalized carbon/molybdenum disulfide composites and their lithium ion battery performance. Master’s Thesis, Northwest Normal University, China, 2018(in Chinese). 苗璇. 功能化碳/二硫化钼复合材料的构筑及其锂离子电池性能研究. 硕士学位论文, 西北师范大学, 2018. 12 Schlapbach L, Zuttel A. Nature, 2001, 414, 353. 13 Frackowiak E, Beguin F. Carbon, 2001, 39, 937. 14 Arico A S, Scrosati P B, Tarascon J M. Nature Materials, 2005, 4, 366. 15 Costi R, Saunders A E, Banin U. Angewandte Chemie International Edition, 2010, 49, 4878. 16 Talapin D, Lee J, Kovalenko M, et al. Chemical Reviews, 2009, 110, 389. 17 Smith A M, Nie S. Accounts of Chemical Research, 2010, 43, 190. 18 Cozzoli P D, Pellegrino T, Manna L. Chemical Society Reviews, 2006, 36, 1195. 19 Sukhovatkin V, Hinds S, Brzozowski L, et al. Science, 2009, 324, 154. 20 Pei Y Q. Synthesis and electrochemical properties of calcium vanadate and manganese vanadate micro-nanostructures. Master’s Thesis, Anhui University of Technology, China, 2013(in Chinese). 裴银强. 钒酸钙、钒酸锰微纳米结构的合成及电化学特性. 硕士学位论文, 安徽工业大学, 2013. 21 Huang W, Gao S, Ding X, et al. Journal of Alloys and Compounds, 2010, 495, 185. 22 Wen J, Jiang T, Sun H Y, et al. ACS Sustainable Chemistry & Engineering, 2020, 8(15), 5927. 23 Zhu H. Study on the simple preparation and optical/electrical properties of metal vanadium oxide nanomaterials. Master’s Thesis, Southwest University, China, 2020(in Chinese). 朱皓. 金属钒氧化物纳米材料的简便制备及其光/电性能研究. 硕士学位论文, 西南大学, 2020. 24 Hua K. Study on the construction and electrochemical properties of carbon-coated manganese-based vanadate micro-nano structures. Master’s Thesis, Harbin University of Technology, China, 2019(in Chinese). 华可. 碳包覆锰基钒酸盐微纳结构的构筑及电化学性能研究. 硕士学位论文, 哈尔滨工业大学, 2019. 25 Kim K H, Hong S H. Electrochim Acta, 2021, 367, 137520. 26 Hara D, Shirakawa J, Wakihara M, et al. Journal of Materials Chemistry, 2002, 12, 3717. 27 Whittingham M S. Chemical Reviews, 2004, 104, 4271. 28 Sun Y, Li C S, Wang L, et al. RSC Advances, 2012, 2, 8110. 29 Morishita T, Nomura K, Inamasu T, et al. Solid State Ionics, 2005, 176, 2235. 30 Wang S, Li S, Cui Q, et al. Journal of Electroanalytical Chemistry, 2022, 924, 116858. 31 Feng L, Xuan Z, Zhao H, et al. Nanoscale Research Letters, 2014, 9(1), 290.