Please wait a minute...
材料导报  2025, Vol. 39 Issue (11): 24030029-6    https://doi.org/10.11896/cldb.24030029
  无机非金属及其复合材料 |
焦钒酸锰酸浸液水热制备MnV2O6纳米带及其储锂性能研究
肖浩1, 温婧1, 李菲菲1, 姜涛1,2,*
1 东北大学冶金学院,沈阳 110000
2 多金属共生矿生态化冶金教育部重点实验室,沈阳 110000
Research on Hydrothermal Synthesis of MnV2O6 Nanobelts from Pyrovanadate Manganese Acid Leaching Solution and Its Lithium Storage Performance
XIAO Hao1, WEN Jing1, LI Feifei1, JIANG Tao1,2,*
1 School of Metallurgy, Northeastern University, Shenyang 110000, China
2 Key Laboratory of Ecological Metallurgy of Polymetallic Symbiotic Ores Ministry of Education, Shenyang 110000, China
下载:  全 文 ( PDF ) ( 16820KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 单斜偏钒酸锰(MnV2O6)较其他钒酸锰化合物具有更高的电导率和更低的电荷迁移活化能,已成为锂离子电池较有前途的负极材料之一。以焦钒酸锰(Mn2V2O7)酸浸液为原料,水热反应得到MnV2O6纳米带,研究了钒浓度和水热温度对水热过程钒转化率的影响。采用X射线衍射(XRD)、扫描电子显微镜(SEM)和电化学工作站分别对MnV2O6纳米带的物相、形貌和电化学性能进行表征。结果表明,钒转化率随钒浓度的增大而增大,随水热温度升高先增大后减小,临界点在180 ℃。制备的MnV2O6由宽约200 nm、厚15~30 nm、长3~5 μm的单斜晶系纳米带构成,倍率性能和循环寿命优异,在1C(1C=847 mA·g-1)倍率下循环200 圈后依然保持763.4 mA·h·g-1的高可逆容量,表现出良好的电化学性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
肖浩
温婧
李菲菲
姜涛
关键词:  焦钒酸锰浸出液  水热制备  偏钒酸锰  纳米带  电化学性能    
Abstract: Monoclinic manganese vanadate (MnV2O6) has higher conductivity and lower charge transfer activation energy than other manganese vanadate compounds, and has become one of the more promising anode materials for lithium ion batteries. In this work, MnV2O6 nanobelts were obtained by hydrothermal reaction using manganese pyrovanadate (Mn2V2O7) acid leaching solution as raw material. The effects of vanadium concentration and hydrothermal temperature on vanadium conversion rate in hydrothermal process were studied. The phase, morphology and electrochemical properties of MnV2O6 nanobelts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical workstation. The results show that the vanadium conversion rate increases with the increase of vanadium concentration, and increases first and then decreases with the increase of hydrothermal temperature. The critical point is 180 ℃. The prepared MnV2O6 is composed of monoclinic nanobelts with a width of about 200 nm, a thickness of 15—30 nm, and a length of 3—5 μm. It has excellent rate performance and cycle life. After 200 cycles at 1C(1C=847 mA·g-1), it still maintains a high reversible capacity of 763.4 mA·h·g-1, showing good electrochemical performance.
Key words:  manganese pyrovanadate leaching solution    hydrothermal synthesis    MnV2O6    nanobelts    electrochemical characteristic
发布日期:  2025-05-29
ZTFLH:  TB34  
基金资助: 国家自然科学基金(52174277;52374300;52204309)
通讯作者:  *姜涛,东北大学冶金学院教授、博士研究生导师。目前主要从事共伴生资源综合利用理论与技术、冶金工艺理论及新工艺等方面的研究。jiangt@smm.neu.edu.cn   
作者简介:  肖浩,东北大学冶金学院硕士研究生,在姜涛教授的指导下进行研究。目前主要从事偏钒酸锰和氟磷酸钒钠的制备及电化学性能研究。
引用本文:    
肖浩, 温婧, 李菲菲, 姜涛. 焦钒酸锰酸浸液水热制备MnV2O6纳米带及其储锂性能研究[J]. 材料导报, 2025, 39(11): 24030029-6.
XIAO Hao, WEN Jing, LI Feifei, JIANG Tao. Research on Hydrothermal Synthesis of MnV2O6 Nanobelts from Pyrovanadate Manganese Acid Leaching Solution and Its Lithium Storage Performance. Materials Reports, 2025, 39(11): 24030029-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24030029  或          https://www.mater-rep.com/CN/Y2025/V39/I11/24030029
1 Schneider K. Journal of Materials Science:Materials in Electronics, 2020, 31, 10478.
2 Xu X M, Xiong F Y, Meng J S, et al. Advanced Functional Materials, 2020, 30, 2.
3 Wen J, Jiang T, Xu Y, et al. Metallurgical and Materials Transactions B, 2018, 49, 1471.
4 Chernova N A, Roppolo M, Dillon A C, et al. Chemistry of Materials, 2009, 19, 2526.
5 Wang Y, Cao G Z. Advanced Materials, 2008, 20, 2251.
6 Cheng F Y, Chen J. Chemistry of Materials, 2011, 21, 9841.
7 Li Y W, Yao J H, Uchaker E, et al. Advanced Energy Materials, 2013, 3, 1171.
8 Zhu C. Study on the anode of high specific capacity cobalt vanadate lithium ion battery. Master’s Thesis, Nanjing University, China, 2018(in Chinese).
朱潮. 高比容钒酸钴锂离子电池负极研究. 硕士学位论文, 南京大学, 2018.
9 Zhu J, Di Z Q, Yang M E, et al. New Chemical Materials, 2019, 47(9), 134(in Chinese).
朱靖, 狄正秋, 杨梦恩, 等. 化工新型材料, 2019, 47(9), 134.
10 Miao X F, Liu Y C, Zhang X X, et al. Journal of Engineering Science, 2017, 39(3), 407(in Chinese).
苗小飞, 刘永川, 张祥昕, 等. 工程科学学报, 2017, 39(3), 407.
11 Miao X. Construction of functionalized carbon/molybdenum disulfide composites and their lithium ion battery performance. Master’s Thesis, Northwest Normal University, China, 2018(in Chinese).
苗璇. 功能化碳/二硫化钼复合材料的构筑及其锂离子电池性能研究. 硕士学位论文, 西北师范大学, 2018.
12 Schlapbach L, Zuttel A. Nature, 2001, 414, 353.
13 Frackowiak E, Beguin F. Carbon, 2001, 39, 937.
14 Arico A S, Scrosati P B, Tarascon J M. Nature Materials, 2005, 4, 366.
15 Costi R, Saunders A E, Banin U. Angewandte Chemie International Edition, 2010, 49, 4878.
16 Talapin D, Lee J, Kovalenko M, et al. Chemical Reviews, 2009, 110, 389.
17 Smith A M, Nie S. Accounts of Chemical Research, 2010, 43, 190.
18 Cozzoli P D, Pellegrino T, Manna L. Chemical Society Reviews, 2006, 36, 1195.
19 Sukhovatkin V, Hinds S, Brzozowski L, et al. Science, 2009, 324, 154.
20 Pei Y Q. Synthesis and electrochemical properties of calcium vanadate and manganese vanadate micro-nanostructures. Master’s Thesis, Anhui University of Technology, China, 2013(in Chinese).
裴银强. 钒酸钙、钒酸锰微纳米结构的合成及电化学特性. 硕士学位论文, 安徽工业大学, 2013.
21 Huang W, Gao S, Ding X, et al. Journal of Alloys and Compounds, 2010, 495, 185.
22 Wen J, Jiang T, Sun H Y, et al. ACS Sustainable Chemistry & Engineering, 2020, 8(15), 5927.
23 Zhu H. Study on the simple preparation and optical/electrical properties of metal vanadium oxide nanomaterials. Master’s Thesis, Southwest University, China, 2020(in Chinese).
朱皓. 金属钒氧化物纳米材料的简便制备及其光/电性能研究. 硕士学位论文, 西南大学, 2020.
24 Hua K. Study on the construction and electrochemical properties of carbon-coated manganese-based vanadate micro-nano structures. Master’s Thesis, Harbin University of Technology, China, 2019(in Chinese).
华可. 碳包覆锰基钒酸盐微纳结构的构筑及电化学性能研究. 硕士学位论文, 哈尔滨工业大学, 2019.
25 Kim K H, Hong S H. Electrochim Acta, 2021, 367, 137520.
26 Hara D, Shirakawa J, Wakihara M, et al. Journal of Materials Chemistry, 2002, 12, 3717.
27 Whittingham M S. Chemical Reviews, 2004, 104, 4271.
28 Sun Y, Li C S, Wang L, et al. RSC Advances, 2012, 2, 8110.
29 Morishita T, Nomura K, Inamasu T, et al. Solid State Ionics, 2005, 176, 2235.
30 Wang S, Li S, Cui Q, et al. Journal of Electroanalytical Chemistry, 2022, 924, 116858.
31 Feng L, Xuan Z, Zhao H, et al. Nanoscale Research Letters, 2014, 9(1), 290.
[1] 孙丽丽, 关宁, 王勇, 李永存. TiFe基储氢合金活化及电化学性能研究进展[J]. 材料导报, 2025, 39(4): 24010105-9.
[2] 童汇, 谢建龙, 张志谋, 郭忻, 喻万景, 郭学益, 黄承焕. 富锂锰基正极材料研究进展[J]. 材料导报, 2025, 39(3): 23080074-18.
[3] 李朋娟, 邹振羽, 黄鹏飞, 金鑫, 吴晓雨, 李晓丽. N/O/P共掺杂三聚氰胺基多孔碳材料的制备及储锌性能研究[J]. 材料导报, 2025, 39(2): 23100113-7.
[4] 刘志伟, 武婵, 遆鑫森, 刘有智. SDBS插层与吸附协同增强片状镍钴氢氧化物的电化学性能[J]. 材料导报, 2025, 39(10): 23070007-8.
[5] 王丕, 宋琛, 董东东, 曾德长, 刘太楷, 文魁, 毛杰, 刘敏. 多孔Fe24Cr金属支撑体厚度对SOFC性能的影响[J]. 材料导报, 2025, 39(1): 23110193-7.
[6] 黄留飞, 王小英, 孙耀宁, 陈亮, 王龙, 任聪聪, 杨晓珊, 王斗, 李晋锋. 激光熔化沉积AlxCoCrFeNi系高熵合金的组织与性能[J]. 材料导报, 2024, 38(6): 22090238-6.
[7] 刘亭亭, 田国兴, 赵欣, 余新勇, 毛超, 于雪寒, 陈玲. 三维网络结构镍钴氢氧化物/石墨烯水凝胶复合材料的合成及电化学性能[J]. 材料导报, 2024, 38(5): 22070064-7.
[8] 周新博, 付景顺, 苑泽伟, 钟兵, 刘涛, 唐美玲. 石墨烯纳米带的制备技术及应用研究现状[J]. 材料导报, 2024, 38(4): 22080114-11.
[9] 杨文秀, 王冰冰, 俞小花, 田林, 谢刚. 热分解温度对IrO2-RuO2-SnO2/Ti阳极微观形貌及性能的影响[J]. 材料导报, 2024, 38(24): 23080117-5.
[10] 俞小花, 李影, 谭皓天, 沈庆峰, 王发强, 谢刚. 十二烷基三甲基氯化铵对铝-空气电池Al-0.8Bi阳极性能的影响[J]. 材料导报, 2024, 38(23): 23070127-6.
[11] 刘泉宇, 彭程, 黄东方, 赵瑞雪, 周权宝, 吕朋, 王学刚. 表面处理技术在储氢材料中的应用研究进展[J]. 材料导报, 2024, 38(20): 23040255-12.
[12] 康小雅, 何天启, 朱福良, 冉奋. 蜂窝状多孔碳材料装载硫单质及其在锂硫电池中的储能性能研究[J]. 材料导报, 2024, 38(16): 23010004-6.
[13] 郑栋浩, 贺格平, 弥元梅, 皇甫慧君, 张慧敏, 李彦霞, 袁蝴蝶. 氧化石墨烯添加量对MoSe2复合rGO电极材料电化学性能的影响[J]. 材料导报, 2024, 38(16): 23060178-8.
[14] 王琼, 黄自知, 胡云楚, 袁利萍, 文瑞芝, 杨婷. 胡萝卜基分级多孔炭材料的制备及电化学性能研究[J]. 材料导报, 2023, 37(9): 21060091-7.
[15] 周亚丽, 雷西萍, 樊凯, 于婷, 关晓琳. 冷冻干燥辅助一步碳化-活化壳聚糖基多孔碳的制备及电化学性能[J]. 材料导报, 2023, 37(5): 21090175-8.
[1] JIN Qinglin, WANG Yang, CAO Lei, SONG Qunling. Effect of Nitriding in Mushy Zone on the Nitrogen Content and Solidification Transformation of Cr10Mn9Ni0.7 Alloy[J]. Materials Reports, 2018, 32(4): 579 -583 .
[2] WANG Shengmin, ZHAO Xiaojun, HE Mingyi. Research Status and Development of Mechanical Plating[J]. Materials Reports, 2017, 31(5): 117 -122 .
[3] HE Yuandong, SUN Changzhen, MAO Weiguo, MAO Yiqi, ZHANG Honglong, CHEN Yanfei, PEI Yongmao, FANG Daining. Measurement of Transverse Piezoelectric Coefficients of Pb(Zr0.52Ti0.48)O3 Thin Films by a Mechano-electrical Multiphysics Coupling, Bulge Test Method[J]. Materials Reports, 2017, 31(15): 139 -144 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[6] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[7] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[8] DU Min, SONG Dian, XIE Ling, ZHOU Yuxiang, LI Desheng, ZHU Jixin. Electrospinning in Rechargeable Ion Batteries for High Efficient Energy Storage[J]. Materials Reports, 2018, 32(19): 3281 -3294 .
[9] LIU Xiao, XU Qian, LAI Guanghong, GUAN Jianan, XIA Chunlei, WANG Ziming, CUI Suping. Application Performances and Mechanism of Polycarboxylic Acid in Different Comb-bonded Structures in High-performance Concrete[J]. Materials Reports, 2018, 32(22): 4011 -4015 .
[10] ZHANG Di, YANG Di, XU Cui, ZHOU Riyu, LI Hao, LI Jing, WANG Peng. Study on Mechanism of Highly Effective Adsorption of Bisphenol F by Reduced Graphene Oxide[J]. Materials Reports, 2019, 33(6): 954 -959 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed