Please wait a minute...
材料导报  2025, Vol. 39 Issue (20): 24090167-10    https://doi.org/10.11896/cldb.24090167
  高分子与聚合物基复合材料 |
木竹衍生硬碳材料在钠离子电池中的应用
丁一丁, 陈洋羊, 卿彦*
中南林业科技大学材料与能源学院,长沙 410000
Application of Wood and Bamboo-derived Hard Carbon Materials in Sodium-ion Batteries
DING Yiding, CHEN Yangyang, QING Yan*
School of Materials and Energy, Central South University of Forestry and Technology, Changsha 410000, China
下载:  全 文 ( PDF ) ( 31423KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 木材和竹材作为天然高分子材料,不仅资源丰富、绿色环保且生物可降解,还具有独特的分级多孔结构和丰富的官能团,是制备硬碳材料的理想前驱体。然而,木竹衍生硬碳材料在实际应用中仍面临比容量不足、首圈库仑效率低等挑战。本文首先介绍了近年来木竹衍生硬碳材料的制备方法,并探讨了木竹前驱体的结构特性与储钠性能间的关联机制,重点分析了缺陷结构、孔结构和比表面积等关键因素对其储钠性能的影响规律。进一步总结了近年来木竹衍生硬碳材料的结构调控策略,包括孔结构调控、异质原子掺杂和硬-软(硬)碳复合结构的构建。针对木竹衍生硬碳闭孔调控策略有限这一关键问题,本文综述了相应的优化方法和最新研究进展。最后,展望了木竹衍生硬碳材料在未来发展中的机遇和挑战,并指出了需要重点关注的研究方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
丁一丁
陈洋羊
卿彦
关键词:  木材  竹材  钠离子电池  硬碳材料    
Abstract: Wood and bamboo, as abundant, eco-friendly, and biodegradable polymeric materials, offer promising precursors for hard carbon due to their hierarchical porous structures and rich functional groups. However, their derived hard carbons face practical challenges such as low specific capacity and initial Coulombic efficiency. This review surveys recent methods for producing hard carbons from wood and bamboo, focusing on the correlation between precursor structures and sodium storage performance. The study focused on analyzing the influence patterns of key factors such as defect structure, pore structure, and specific surface area on its sodium storage performance. Special attention is given to the limited approaches for closed-pore regulation, reviewing optimization methods and recent advancements. Finally, future research directions and challenges are outlined.
Key words:  wood    bamboo    sodium-ion battery    hard carbon
发布日期:  2025-10-27
ZTFLH:  TQ127.11  
  TM912  
基金资助: 国家重点研发计划(2023YFD2200503);中南林业科技大学研究生科技创新基金项目(2024CX02007)
通讯作者:  *卿彦,中南林业科技大学材料科学与工程学院教授、科学研究院院长、博士研究生导师。国家优秀青年科学基金获得者,国家青年人才托举工程入选者。目前主要从事木材科学、生物质纳米材料、木材功能性改良等方面的研究工作。qingyan0429@163.com   
作者简介:  丁一丁,中南林业科技大学材料科学与工程学院硕士研究生,在卿彦教授的指导下进行研究。目前主要研究领域为生物质能源与材料。
引用本文:    
丁一丁, 陈洋羊, 卿彦. 木竹衍生硬碳材料在钠离子电池中的应用[J]. 材料导报, 2025, 39(20): 24090167-10.
DING Yiding, CHEN Yangyang, QING Yan. Application of Wood and Bamboo-derived Hard Carbon Materials in Sodium-ion Batteries. Materials Reports, 2025, 39(20): 24090167-10.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24090167  或          https://www.mater-rep.com/CN/Y2025/V39/I20/24090167
1 Hirsh H S, Li Y, Tan D H S, et al. Advanced Energy Materials, 2020, 10(32), 2001274.
2 Dey S C, Worfolk B, Lower L, et al. ACS Energy Letters, 2024, 9, 2590.
3 Jiang M, Sun N, Soomro R A, et al. Journal of Energy Chemistry, 2021, 55, 34.
4 Xu T, Qiu X, Zhang X, et al. Chemical Engineering Journal, 2023, 452, 139514.
5 Tang Z, Zhang R, Wang H, et al. Nature Communications, 2023, 14(1), 6024.
6 Qing Y, Liao Y, Liu J W, et al. Journal of Forestry Engineering, 2021, 6(5), 1 (in Chinese).
卿彦, 廖宇, 刘婧祎, 等. 林业工程学报, 2021, 6(5), 1.
7 Yu W J, Jiang Z H, Ye K L. Word Forestry Reasarch, 2002, 15(2), 50 (in Chinese).
于文吉, 江泽慧, 叶克林. 世界林业研究, 2002, 15(2), 50.
8 Wu Y Q. Journal of Central South University of Forestry & Technology, 2021, 41(1), 1 (in Chinese).
吴义强. 中南林业科技大学学报, 2021, 41(1), 1.
9 Wegst U G K, Bai H, Saiz E, et al. Nature Materials, 2015, 14(1), 23.
10 Zhu J, Roscow J, Chandrasekaran S, et al. ChemSusChem, 2020, 13(6), 1275.
11 Qing Y. Journal of Central South University of Forestry & Technology, 2022, 42(12), 13 (in Chinese).
卿彦. 中南林业科技大学学报, 2022, 42(12), 13.
12 Chen H. Study on the structural characteristics of bamboo cell wall. Ph. D. Thesis, Chinese Academy of Forestry, China, 2014 (in Chinese).
陈红. 竹纤维细胞壁结构特征研究. 博士学位论文, 中国林业科学研究院, 2014.
13 Wei P L, Yang S M, Liu R, et al. Scientia Silvae Sinica, 2018, 54(1), 99 (in Chinese).
韦鹏练, 杨淑敏, 刘嵘, 等. 林业科学, 2018, 54(1), 99.
14 Li Y, Lu Y, Meng Q, et al. Advanced Energy Materials, 2019, 9(48), 1902852.
15 Sun N, Guan Z, Liu Y, et al. Advanced Energy Materials, 2019, 9(32), 1901351.
16 Zheng Y, Lu Y, Qi X, et al. Energy Storage Materials, 2019, 18, 269.
17 Guo S, Chen Y, Tong L, et al. Electrochimica Acta, 2022, 410, 140017.
18 Alvin S, Yoon D, Chandra C, et al. Journal of Power Sources, 2019, 430, 157.
19 Xu Z, Chen J, Wu M, et al. Electronic Materials Letters, 2019, 15, 428.
20 Sun D, Luo B, Wang H, et al. Nano Energy, 2019, 64, 103937.
21 Xiao L, Lu H, Fang Y, et al. Advanced Energy Materials, 2018, 8(20), 1703238.
22 Dahbi M, Kiso M, Kubota K, et al. Journal of Materials Chemistry A, 2017, 5(20), 9917.
23 Zhang T, Mao J, Liu X, et al. RSC Advances, 2017, 7(66), 41504.
24 Deng W, Cao Y, Yuan G, et al. ACS Applied Materials & Interfaces, 2021, 13(40), 47728.
25 Wang J, Yan L, Ren Q, et al. Electrochimica Acta, 2018, 291, 188.
26 Qatarneh A F, Dupont C, Michel J, et al. Journal of Environmental Chemical Engineering, 2021, 9(6), 106604.
27 Song Z, Di M, Zhang X, et al. Advanced Energy Materials, 2024, 15, 39.
28 Wang C C, Su W L. Surface and Coatings Technology, 2021, 415, 127125.
29 Saavedra Rios C M, Simonin L, Geyer A, et al. Energies, 2020, 13(14), 3513.
30 Shen F, Luo W, Dai J, et al. Advanced Energy Materials, 2016, 6(14).
31 Li H, Shen F, Luo W, et al. ACS Applied Materials & Interfaces, 2016, 8(3), 2204.
32 Rios C M S, Simone V, Simonin L, et al. Biomass and Bioenergy, 2018, 117, 32.
33 Wang X K, Shi J, Mi L W, et al. Rare Metals, 2020, 39, 1053.
34 Zhou S, Tang Z, Pan Z, et al. SusMat, 2022, 2(3), 357.
35 Wang Y, Feng Z, Zhu W, et al. Materials, 2018, 11(8), 1294.
36 Marino C, Cabanero J, Povia M, et al. Journal of the Electrochemical Society, 2018, 165(7), A1400.
37 Stevens D A, Dahn J R. Journal of the Electrochemical Society, 2001, 148(8), A803.
38 Harris P J F. Critical Rreviews in Solid State and Materials Sciences, 2005, 30(4), 235.
39 Bommier C, Surta T W, Dolgos M, et al. Nano Letters, 2015, 15(9), 5888.
40 Stevens D A, Dahn J R. Journal of the Electrochemical Society, 2000, 147(4), 1271.
41 Cao Y, Xiao L, Sushko M L, et al. Nano Letters, 2012, 12(7), 3783.
42 Li Y, Hu Y S, Titirici M M, et al. Advanced Energy Materials, 2016, 6(18), 1600659.
43 Bommier C, Surta T W, Dolgos M, et al. Nano Letters, 2015, 15(9), 5888.
44 Chen X, Tian J, Li P, et al. Advanced Energy Materials, 2022, 12(24), 2200886.
45 Yin X, Lu Z, Wang J, et al. Advanced Materials, 2022, 34(13), 2109282.
46 Franklin R E. Proceedings of the Royal Society A Mathematical Physical & Engineering Sciences, 1951, 209(1097), 196.
47 Ban L L, Crawford D, Marsh H. Journal of Applied Crystallography, 1975, 8(4), 415.
48 Townsend S J, Lenosky T J, Muller D A, et al. Physical Review Letters, 1992, 69(6), 921.
49 Harris P J F. International Materials Reviews, 1997, 42(5), 206.
50 Qiu S, Xiao L, Sushko M L, et al. Advanced Energy Materials, 2017, 7(17), 1700403.
51 Saurel D, Orayech B, Xiao B, et al. Advanced Energy Materials, 2018, 8(17), 1703268.
52 Li Y, Hu Y S, Titirici M M, et al. Advanced Energy Materials, 2016, 6(18), 1600659.
53 Zhao Y, Ye J, Zhang P, et al. Applied Surface Science, 2022, 602, 154336.
54 Olsson E, Cottom J, Cai Q. Small, 2021, 17(18), 2007652.
55 Buiel E R, George A E, Dahn J R. Carbon, 1999, 37(9), 1399.
56 Ghimbeu C M, Zhang B, de Yuso A M, et al. Carbon, 2019, 153, 634.
57 Li Y, Lu Y, Meng Q, et al. Advanced Energy Materials, 2019, 9(48), 1902852.
58 Wang P, Zhang G, Wei X Y, et al. Journal of the American Chemical Society, 2021, 143(9), 3280.
59 Kamiyama A, Kubota K, Igarashi D, et al. Angewandte Chemie International Edition, 2021, 60(10), 5114.
60 Schutjajew K, Giusto P, Härk E, et al. Carbon, 2021, 185, 697.
61 Zhang S, Sun N, Li X, et al. Energy Storage Materials, 2024, 66, 103183.
62 Li X, Sun N, Zhang S, et al. Journal of Materials Chemistry A, 2024, 12(20), 12015.
63 Zhao J, He X X, Lai W H, et al. Advanced Energy Materials, 2023, 13(18), 2300444.
64 Feng Y, Tao L, He Y, et al. Journal of Materials Chemistry A, 2019, 7(47), 26954.
65 Wang H, Maiyalagan T, Wang X. ACS Catalysis, 2012, 2(5), 781.
66 Jin Q, Li W, Wang K, et al. Journal of Materials Chemistry A, 2019, 7(17), 10239.
67 Qiao Y, Han R, Pang Y, et al. Journal of Materials Chemistry A, 2019, 7(18), 11400.
68 Li Z, Bommier C, Chong Z S, et al. Advanced Energy Materials, 2017, 7(18), 1602894.
69 Cheng D, Zhou X, Hu H, et al. Carbon, 2021, 182, 758.
70 Cheng B, Li X, Xu H, et al. ACS Applied Materials & Interfaces, 2022, 14(28), 31879.
71 Xue Y, Gao M, Wu M, et al. ChemElectroChem, 2020, 7(19), 4010.
72 Qiu G, Ning M, Zhang M, et al. Carbon, 2023, 205, 310.
73 Xie F, Xu Z, Jensen A C S, et al. Advanced Functional Materials, 2019, 29(24), 1901072.
74 Jing W, Wang M, Li Y, et al. Electrochimica Acta, 2021, 391, 139000.
75 Zhang W, Huang Z, Alshareef H N, et al. Carbon Research, 2024, 3(1), 28.
76 Wang Y, Yi Z, Xie L, et al. Advanced Materials, 2024, 2401249.
77 Chen C, Huang Y, Zhu Y, et al. ACS Sustainable Chemistry & Engineering, 2020, 8(3), 1497.
78 Chen L, Bai L, Yeo J, et al. ACS Applied Materials & Interfaces, 2020, 12(24), 27499.
79 Wang H, Sun F, Qu Z, et al. ACS Sustainable Chemistry & Engineering, 2019, 7(22), 18554.
80 Zhang T, Zhang T, Wang F, et al. Journal of Energy Chemistry, 2024, 96, 472.
81 Aristote N T, Liu C, Deng X, et al. Journal of Electroanalytical Chemistry, 2022, 923, 116769.
82 Alvin S, Chandra C, Kim J. Chemical Engineering Journal, 2020, 391, 123576.
83 Ding J, Zhang Y, Huang Y, et al. Journal of Alloys and Compounds, 2021, 851, 156791.
84 Wu X S, Dong X L, Wang B Y, et al. Renewable Energy, 2022, 189, 630.
[1] 张文浩, 韩文佳, 陈安祥, 周世晋, 王晓龙, 陈仪玮, 李霞. 生物质基硬碳钠离子电池负极材料预处理研究进展[J]. 材料导报, 2025, 39(9): 24030195-12.
[2] 邓泽斌, 刘静, 赖升晖, 刘达, 黄金灼, 袁光明. 苯丙氨酸衍生物诱导SiO2矿化杉木复合材的制备及性能研究[J]. 材料导报, 2025, 39(4): 24020024-8.
[3] 惠功领, 张晋豪, 解炜, 辛智, 毛昳萱, 陈成猛. 预氧化在高性能钠离子电池用硬炭制备改性中发挥的作用[J]. 材料导报, 2025, 39(20): 24090241-13.
[4] 彭婷婷, 杨兆哲, 符启良, 冯鑫浩, 吴智慧, 刘洪海. 木材预处理技术的研究进展与应用综述[J]. 材料导报, 2025, 39(18): 24070211-15.
[5] 初石民, 李芸琪, 林兰英, 王东, 傅峰. 载荷作用下木材的变形和破坏行为机制及影响因素研究进展[J]. 材料导报, 2025, 39(17): 24090106-8.
[6] 刘冬旭, 宋皓炜, 刘鹏, 姚青荣, 王仲民, 邓健秋. 天然生物聚合物衍生硬炭材料的微观结构与储钠性能[J]. 材料导报, 2025, 39(16): 24070125-6.
[7] 郭首政, 邢东. 纳米材料在木材超疏水领域的应用[J]. 材料导报, 2025, 39(14): 24050202-10.
[8] 孙文浩, 田君, 高洪波, 刘娜, 张锟, 梁晓嫱, 王聪杰, 王浩辰. 钠离子电池关键材料的热行为研究新进展[J]. 材料导报, 2025, 39(11): 24070213-11.
[9] 党奔, 陈志俊. 木基光热转换功能材料的应用研究进展[J]. 材料导报, 2025, 39(1): 24100143-13.
[10] 崔政, 李京超, 李建章, 高强. 木材胶黏剂仿生改性研究进展[J]. 材料导报, 2024, 38(8): 22110060-7.
[11] 王培远, 邓根成, 朱登贵, 李永浩, 孙淑敏, 方少明. 高熵材料在锂/钠离子电池中的应用研究进展[J]. 材料导报, 2024, 38(22): 23040299-8.
[12] 王旭洁, 雒翠梅, 母军, 漆楚生. 热处理对木材多尺度结构及力学性能影响的研究现状[J]. 材料导报, 2024, 38(18): 23020251-8.
[13] 温佳璐, 刘文静, 张明辉. 木材吸湿特性的研究方法[J]. 材料导报, 2024, 38(18): 23030197-9.
[14] 唐晶晶, 李晓滢, 陈言蹊, 周柳禧, 文康, 周其杰, 陈松, 杨娟, 周向阳. 钠离子电池生物质基硬碳负极材料的研究进展[J]. 材料导报, 2024, 38(15): 23040228-13.
[15] 王祺, 冯鑫浩, 刘新有. 古旧木材加固保护研究进展[J]. 材料导报, 2024, 38(1): 22070091-19.
[1] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[2] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[3] JIA Zhihong, WENG Yaoyao, DING Lipeng, CHENG Tao, LIU Yingying, LIU Qing. Sn Microalloying for Aluminum Alloys: Strengthening Effects and Mechanisms[J]. Materials Reports, 2017, 31(9): 123 -127 .
[4] WANG Ru, ZHANG Shaokang, WANG Gaoyong. Influence and Mechanism of Mineral Admixtures on Setting and Hardening of Styrene-Butadiene Copolymer/Cement Composite Cementitious Material[J]. Materials Reports, 2017, 31(24): 69 -73 .
[5] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[6] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[7] LIU Guoyi, LIU Yuanjun, ZHAO Xiaoming. A Study on Protecting Efficiency to the Radiative Heat of the Outer Fabric for the Fire Proximity Suits[J]. Materials Reports, 2017, 31(22): 116 -120 .
[8] ZHANG Wangxi, WANG Yanzhi, LIANG Baoyan, LI Qiquan, LUO Wei, SUN Changhong, CHENG Xiaozhe, SUN Yuzhou. Review on the Development of Nanodiamonds Used as Functional Materials[J]. Materials Reports, 2018, 32(13): 2183 -2188 .
[9] YANG Fang, ZHANG Long, YU Kun, QI Tianjiao, GUAN Debin. Recent Advances in Humidity Sensitivity of Graphene[J]. Materials Reports, 2018, 32(17): 2940 -2948 .
[10] TIAN Yaqiang, LI Wang, ZHENG Xiaoping, WEI Yingli, SONG Jinying, CHEN Liansheng. Application of Alloy Elements in Quenching and Partitioning Steel:an Overview[J]. Materials Reports, 2019, 33(7): 1109 -1118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed