Please wait a minute...
材料导报  2025, Vol. 39 Issue (18): 24070211-15    https://doi.org/10.11896/cldb.24070211
  高分子与聚合物基复合材料 |
木材预处理技术的研究进展与应用综述
彭婷婷1, 杨兆哲2, 符启良3, 冯鑫浩1, 吴智慧1, 刘洪海1,4,*
1 南京林业大学家居与工业设计学院,南京 210037
2 中国林业科学研究院林产化学工业研究所,南京 210042
3 南京林业大学材料科学与工程学院,南京 210037
4 江苏省林业资源高效加工利用协同创新中心,南京 210037
Review on Research Progress and Application of Wood Pretreatment Technology
PENG Tingting1, YANG Zhaozhe2, FU Qiliang3, FENG Xinhao1, WU Zhihui1, LIU Honghai1,4,*
1 College of Furnishings and Industrial Design, Nanjing Forestry University, Nanjing 210037, China
2 Institute of Chemical Industry of Forest Products, Nanjing 210042, China
3 College of Materials Sci.& Eng., Nanjing Forestry University, Nanjing 210037, China
4 Collaborative Innovation Center for Efficient Processing and Utilization of Forestry Resources in Jiangsu Province, Nanjing 210037, China
下载:  全 文 ( PDF ) ( 33819KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 木材是一种绿色、可再生资源,由于其特有的纹理、颜色、气味、调温调湿等特性,已经被广泛应用于建筑、汽车、家居、艺术等领域。然而,木材复杂的微纳结构和难解的多重组分提高了它的利用难度,进而限制了其高效利用。预处理技术可以改变木材在化学组成和物理结构上的各向异性,突破部分组成的处理屏障,并解译微纳致密结构,从而提高木材的物理化学可及性,进而实现木材后续的功能化高效利用。本文在介绍木材基本结构与特性的基础上,概括了不同木材预处理工艺包括生物、物理、化学以及联合预处理等方法;并对预处理后的木材在木材转化、力学性能、光学性能、电学性能以及声学特性等方面的应用进展进行综述,以期为木材预处理方法的选择、开发及应用提供一定的参考,也为木质资源的绿色、低碳、高效利用奠定基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
彭婷婷
杨兆哲
符启良
冯鑫浩
吴智慧
刘洪海
关键词:  木材预处理  木材转化  力学性能  渗透性  光学性能  电学性能  声学性能    
Abstract: Wood is a green, renewable resource that has been widely used in fields such as construction, automotive, furniture, and art due to its unique texture, color, aroma, temperature and humidity regulation properties. However, the complex micro-nano structure and the intricate multi-component nature of wood increase its utilization difficulty, thereby limiting its efficient use. Pretreatment technology can alter the anisotropy in the chemical composition and physical structure of wood, overcome processing barriers of certain components, and decipher the dense micro-nano structure, thereby enhancing the physicochemical accessibility of wood. This facilitates the subsequent functional and efficient utilization of wood. This article introduces the basic structure and characteristics of wood, summarizes various wood pretreatment processes, including biological, physical, chemical, and combined pretreatment methods, and reviews the application progress of pretreated wood in terms of wood conversion, mechanical properties, optical properties, electrical properties, and acoustic characteristics. The aim is to provide a reference for the selection, development, and application of wood pretreatment methods, and to lay a foundation for the green, low-carbon, and efficient utilization of woody resources.
Key words:  wood pretreatment    wood conversion    mechanical property    permeability    optical property    electrical property    acoustic property
出版日期:  2025-09-25      发布日期:  2025-09-11
ZTFLH:  S781.7  
基金资助: 江苏省自然科学基金青年项目(BK20200779);国家重点研发计划(2023YFD2201500)
通讯作者:  *刘洪海,南京林业大学家居与工业设计学院副教授、硕士研究生导师。目前主要从事木材干燥与材性改良;木制品加工工艺等方面的研究工作。liuhonghai2020@njfu.edu.cn   
作者简介:  彭婷婷,南京林业大学家居与工业设计学院硕士研究生,在刘洪海副教授和冯鑫浩讲师的指导下开展木材改性的研究。
引用本文:    
彭婷婷, 杨兆哲, 符启良, 冯鑫浩, 吴智慧, 刘洪海. 木材预处理技术的研究进展与应用综述[J]. 材料导报, 2025, 39(18): 24070211-15.
PENG Tingting, YANG Zhaozhe, FU Qiliang, FENG Xinhao, WU Zhihui, LIU Honghai. Review on Research Progress and Application of Wood Pretreatment Technology. Materials Reports, 2025, 39(18): 24070211-15.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24070211  或          https://www.mater-rep.com/CN/Y2025/V39/I18/24070211
1 Dong X, Gan W, Shang Y, et al. Nature Sustainability, 2022, 5(7), 628.
2 Liu Y L. Study on the demand for wood products in China. Master's Thesis, Beijing Forestry University, China, 2015 (in Chinese).
刘云龙. 中国木材产品需求研究. 硕士学位论文, 北京林业大学, 2015.
3 Bi W, Li H, Hui D, et al. Nanotechnology Reviews, 2021, 10(1), 978.
4 Hou X T, Li Z X, Yao Z L, et al. Chinese Science Bulletin, 2022, 67(23), 2736 (in Chinese).
侯昕彤, 李再兴, 姚宗路, 等. 科学通报, 2022, 67(23), 2736.
5 Xu P, Donaldson L A, Gergely Z R, et al. Wood Science and Technology, 2007, 41(2), 101.
6 Ren K. Preparation and properties of Wood based polyimide composites. Master's Thesis, Northeast Forestry University, China, 2021 (in Chinese).
任库. 木质基聚酰亚胺复合材料的制备及其性能研究. 硕士学位论文, 东北林业大学, 2021.
7 Liu C, Luan P, Li Q, et al. Advanced Materials, 2021, 33(28), 2001654.
8 Wijeyekoon S L J, Vaidya A A. World Journal Microbiol Biotechnol, 2021, 37(8), 15.
9 Thomas B, Raj M C, Athira K B, et al. Chemical Reviews, 2018, 118(24), 11575.
10 Li M Y. Study on the construction and adsorption properties of cellulose based functional materials. Ph. D. Thesis, Zhengzhou University, China, 2021 (in Chinese).
李萌雅. 纤维素基功能材料的构建与吸附性能研究. 博士学位论文, 郑州大学, 2021.
11 Zhou S, Miao Q X, Huang L L, et al. Chemistry and Industry of Forest Products, 2017, 37(6), 10 (in Chinese).
周帅, 苗庆显, 黄六莲, 等. 林产化学与工业, 2017, 37(6), 10.
12 Shen D, Gu S, Bridgwater A. Carbohydrate Polymers, 2010, 82(1), 39.
13 Rao J, Lv Z W, Chen G G, et al. Progress in Polymer Science, 2023, 140, 101675.
14 Zhai X H, LI X, Yuan Y J. Biotechnology Bulletin, 2021, 37(3), 162. (in Chinese).
翟旭航, 李霞, 元英进. 生物技术通报, 2021, 37(3), 162.
15 Chen C, Hu L. Advanced Materials, 2021, 33(28), 2002890.
16 Yu H, Guo G, Zhang X, et al. Bioresource technology, 2009, 100(21), 5170.
17 Ray M J, Leak D J, Spanu P D, et al. Biomass & Bioenergy, 2010, 34(8), 1257.
18 Pánek M, Reinprecht L. Wood Research, 2008, 53(2), 1.
19 Arias M E, Rodríguez J, Pérez M I, et al. Wood Science and Technology, 2010, 44 (2), 179.
20 Zabed H M, Akter S, Yun J, et al. Renewable and Sustainable Energy Reviews, 2019, 105, 105.
21 Wu Z, Peng K, Zhang Y, et al. Materials Today Bio, 2022, 16, 100445.
22 Zhao D Y, Cheng W L, Han G P, et al. Journal of Northeast Forestry University, 2016, 44(4), 60 (in Chinese).
赵东洋, 程万里, 韩广萍, 等. 东北林业大学学报, 2016, 44(4), 60.
23 Yang B, Tao L, Wyman C E. Biofuels, Bioproducts and Biorefining, 2018, 12(1), 125.
24 Ramos L P. Quimica Nova, 2003, 26(6), 863.
25 Li H Q, Qu Y S, Yang Y Q, et al. Bioresource Technology, 2016, 199, 34.
26 Li H, Qu Y, Yang Y, et al. Bioresource Technology, 2016, 199, 34.
27 Zhou, G, L, Guo Y, Wu Q. China Brewing, 2008, (22), 54 (in Chinese).
周广麒, 郭茵, 吴琼. 中国酿造, 2008, (22), 54.
28 Zhou M, Tian X. International Journal of Biological Macromolecules, 2022, 202, 256.
29 Chen B W, Zhuan S H, Jin Y Q, et al. Journal of Forest and Environment, 2022, 42 (1), 88 (in Chinese).
陈博文, 颛孙浩, 金咏琪, 等. 森林与环境学报, 2022, 42(1), 88.
30 Deng S P, Wang C C, Lin J G, et al. Journal of Forestry and Environment, 2019, 39(6), 647 (in Chinese).
邓邵平, 王春灿, 林金国, 等. 森林与环境学报, 2019, 39(6), 647.
31 Jönsson L J, Martín C. Bioresource Technology, 2016, 199, 103.
32 Chen L H. Study on enzymatic hydrolysis of lignocellulose and characte-ristic of nanocellulose based on acid treatment. Ph. D. Thesis, South China University of Technology, China, 2017(in Chinese).
陈理恒. 基于酸处理的木质纤维酶水解及纳米纤维素特性的研究. 博士学位论文, 华南理工大学, 2017.
33 Xu J K, Sun R C. In:Biomass fractionation technologies for a lignocellulosic feedstock based biorefinery, 2016, pp. 431.
34 Zhang H W, Chen Z J, Zhang C Y, et al. Industrial Minerals & Proces-sing, DOI:10.16283/j.cnki.hgkwyjg.2024.04.007 (in Chinese).
张瀚文, 陈正军, 张晨雨, 等. 化工矿物与加工, DOI:10.16283/j.cnki.hgkwyjg.2024.04.007.
35 Meng X, Bhagia S, Wang Y, et al. Industrial Crops and Products, 2020, 146, 112144.
36 Mccrary P D, Chatel G, Alaniz S A, et al. Energy & Fuels, 2014, 28(5), 3460.
37 Del Mar Contreras-Gámez M, Galán-Martín Á, Seixas N, et al Bioresource Technology, 2023, 369, 128396.
38 Zhang X, Wu S B. China pulp & Paper, 2024, 43(5), 18 (in Chinese).
张兴, 武书彬. 中国造纸, 2024, 43(5), 18.
39 Wang H, Ma H F, Jin C, et al. Industrial Crops and Products, 2025, 227, 120845.
40 Zheng A, Zhao K, Zhao Z, et al. Waste and Biomass Valorization, 2017, 8, 349.
41 Wittner N, Slezsák J, Broos W, et al. Spectrochimica Acta Part A:Mole-cular and Biomolecular Spectroscopy, 2023, 285, 121912.
42 Castoldi R, Bracht A, De Morais G R, et al. Chemical Engineering Journal, 2014, 258, 240.
43 Ferraz A, Parra C, Freer J, et al. World Journal of Microbiology and Biotechnology, 2000, 16, 641.
44 Nazarpour F, Abdullah D K, Abdullah N, et al. Materials, 2013, 6(5), 2059.
45 Nishanth S, Chikunov A S, Thankappan S, et al. Biomass Conversion and Biorefinery, 2023, 13(16), 14697.
46 Rico A, Rencoret J, Del Río J C, et al. BioEnergy Research, 2015, 8(1), 211.
47 Li H, Yelle D J, Li C, et al. Proceedings of the National Academy of Sciences, 2017, 114(18), 4709.
48 Li R R, Xu W, Xiong X Q, et al. China Forest Products Industry, 2018, 45(12), 1 (in Chinese).
李荣荣, 徐伟, 熊先青, 等. 林产工业, 2018, 45(12), 1.
49 He X. The research on characteristics and mechanism of poplar wood during high-intensity microwave pretreatment. Ph. D. Thesis, Central South University of Forestry and Technology, China, 2021 (in Chinese).
贺霞. 杨木高强度微波预处理特性与机理研究, 博士学位论文, 中南林业科技大学, 2021.
50 He Z B, Zhao Z J, Yang F, et al. Maderas-Ciencia Y Tecnologia, 2014, 16(4), 395.
51 Chang S, Zhao Z, Zheng A, et al. Bioresource Technology, 2013, 140, 138.
52 Romaní A, Garrote G, Alonso J L, et al. Bioresource Technology, 2010, 101(22), 8706.
53 Haddis D Z, Chae M, Asomaning J, et al. Carbohydrate Polymers, 2024, 323, 121460.
54 Cebreiros F, Risso F, Cagno M, et al. Fuel, 2021, 290, 119818.
55 Kol H Ş, Çayır B. BioResources, 2021, 16(2), 2513.
56 He X, Xiong X, Xie J, et al. BioResources, 2017, 12(2), 3850.
57 He Z, Wang Z, Zhao Z, et al. Ultrasonics Sonochemistry, 2017, 34, 136.
58 He Z, Zhang Y, Wang Z, et al. Drying Technology, 2016, 34(10), 1141.
59 Boháček Š, Pažitný A, Handlovska M. Wood Research, 2022, 67(6), 953.
60 Zhu H, Ma Q, Sheng J, et al. Green Chemistry, 2020, 22(3), 942.
61 Ali M R, Abdullah U H, Ashaari Z, et al. Polymers, 2021, 13(16), 2612.
62 Kucerová V, Vybohová E, Canová I, et al. Industrial Crops and Pro-ducts, 2016, 91, 22.
63 Cui M, Huang R L, Su R X, et al. CIESC Journal, 2012, 63(3), 677, (in Chinese).
崔美, 黄仁亮, 苏荣欣, 等. 化工学报, 2012, 63(3), 677.
64 Muzamal M, Gamstedt E K, Rasmuson A. Wood Science and Technology, 2017, 51(3), 447.
65 Krutul D, Szadkowski J, Výbohová E, et al. Wood Science and Technology, 2024, 58(2), 441.
66 Xu E G, Lin G, Li S M, et al. Chinese Journal of Wood Science and Technology, 2020, 34(1), 20 (in Chinese).
徐恩光, 林兰英, 李善明, 等. 木材工业, 2020, 34(1), 20.
67 Mao Y Q, Xu W, Zhan X X. China Forest Products Industry, 2020, 57 (5), 7 (in Chinese).
毛逸群, 徐伟, 詹先旭. 微波预处理对杨木渗透性的影响. 林产工业, 2020, 57(5), 7.
68 Li X J, Lu K Y, Lin L Y, et al. Forestry Studies in China, 2010, 12, 9.
69 Mascarenhas F J, Dias A M, Christoforo A L. Forests, 2021, 12(6), 745.
70 Ensminger D, Bond L J. Ultrasonics:Fundamentals, technologies, and applications, CRC Press, Boca Raton, 2011, pp. 765.
71 Cherpozat L, Loranger E, Daneault C. Journal of Analytical and Applied Pyrolysis, 2017, 126, 31.
72 Mai C, Schmitt U, Niemz P. Holzforschung, 2022, 76(2), 102.
73 Zhu J W, Gong D H, Mao J H, et al. Advances in New and Renewable Energy, 2022, 10 (4), 383 (in Chinese).
朱建伟, 龚德鸿, 茅佳华, 等. 新能源进展, 2022, 10(4), 383.
74 Chi C, Hui Z, Liu M, et al. BioResources, 2017, 12(2), 3905.
75 Kumagai S, Matsuno R, Grause G, et al. Bioresource Technology, 2015, 178, 76.
76 Lv S H, Lin X L, Gao Z Z, et al. Molecules, 2022, 27(22), 7880.
77 Bay M S, Karimi K, Esfahany M N, et al. Industrial Crops and Products, 2020, 152, 112506.
78 Bouxin F P, Jackson S D, Jarvis M C. Bioresource Technology, 2014, 151, 441.
79 Shafiei M, Zilouei H, Zamani A, et al. Applied Energy, 2013, 102, 163.
80 Torr K M, Love K T, Cetinkol O P, et al. Green Chemistry, 2012, 14(3), 778.
81 Ran Y, Lu D, Jiang J, et al. Chemical Engineering Journal, 2023, 471, 144476.
82 Fan Z, Sun H, Zhang L, et al. ACS Sustainable Chemistry & Engineering, 2022, 10(29), 9600.
83 Chi C C, Hui Z Z, Liu M, et al. Bioresources, 2017, 12(2), 3905.
84 Noori M S, Karimi K. RSC Advances, 2016, 6(70), 65683.
85 Mirahmadi K, Kabir M M, Jeihanipour A, et al. BioResources, 2010, 5(2), 928.
86 Yin X, Wei L, Pan X, et al. Frontiers in Plant Science, 2021, 12, 670061.
87 Zhao X B, Cheng K K, Liu D H. Applied Microbiology and Biotechnology, 2009, 82(5), 815.
88 Wu Y, Ji H, Ji X. Cellulose, 2023, 30(5), 2859.
89 Shi J, Balamurugan K, Parthasarathi R, et al. Green Chemistry, 2014, 16(8), 3830.
90 Muhammad N, Man Z, Mutalib M A, et al. ChemBioEng Reviews, 2015, 2(4), 257.
91 Gschwend F J, Hallett J P, Brandt-Talbot A. Molecules, 2020, 25(10), 2318.
92 Francisco M, Van Den Bruinhorst A, Kroon M C. Green Chemistry, 2012, 14(8), 2153.
93 Satlewal A, Agrawal R, Bhagia S, et al. Biotechnology Advances, 2018, 36(8), 2032.
94 Zhao S, Li Y, Wang Z, et al. China Pulp & Paper, 2024, 43(8), 29 (in Chinese)
赵烁, 李莹, 王震, 等. 中国造纸, 2024, 43(8), 29.
95 Han S, Wang R, Wang K, et al. Bioresource Technology, 2022, 363, 127905.
96 Ma S, Li Y, Li J, et al. Renewable and Sustainable Energy Reviews, 2022, 165, 112606.
97 Li H Y, Chen X, Wang C Z, et al. Biotechnology for Biofuels, 2016, 9, 166.
98 Ren K, Xia Q, Liu Y, et al. Composites Science and Technology, 2021, 207, 108698.
99 Yao L, Cui P, Chen X, et al. Bioresource Technology, 2022, 350, 126885.
100 Wang S, Hou X, Sun J, et al. Molecules, 2024, 29(9), 2153.
101 Shen B, Hou S, Jia Y, et al. Bioresource Technology, 2021, 341, 125787.
102 Del Rio P G, Gullón B, Romaní A, et al. Bioresource Technology, 2021, 338, 125535.
103 Yang X, Cui C, Zheng A, et al. Industrial Crops and Products, 2020, 157, 112921.
104 Hashemi S, Joseph P, Mialon A, et al. Bioresource Technology Reports, 2021, 16, 100874.
105 Kandhola G, Rajan K, Labbé N, et al. RSC advances, 2017, 7(72), 45652.
106 Li J, Lu Y, Yang D, et al. Biomacromolecules, 2011, 12(5), 1860.
107 Abik F, Palasingh C, Bhattarai M, et al. Journal of Agricultural and Food Chemistry, 2023, 71(6), 2667.
108 Azhar S, Henriksson G, Theliander H, et al. Carbohydrate Polymers, 2015, 117, 19.
109 Xiao S, Chen C, Xia Q, et al. Science, 2021, 374(6566), 465.
110 Chen C, Song J, Cheng J, et al. ACS Nano, 2020, 14(12), 16723.
111 Ran Y, Lu D, Wang Y, et al. Industrial Crops and Products, 2024, 213, 118400.
112 Zhu M, Song J, Li T, et al. Advanced Materials (Deerfield Beach, Fla), 2016, 28(26), 5181.
113 Wang C, Tang S, Li B, et al. Chemical Engineering Journal, 2023, 455, 140568.
114 Li L. Study on the preparation and properties of electromagnetic shielding materials based on nature wood. Master's Thesis, Beijing University of Chemical Technology, China, 2023.
李磊. 基于天然木材的电磁屏蔽材料的制备与性能研究. 硕士学位论文, 北京化工大学, 2023.
115 Han Z M, Sun W B, Yang K P, et al. Angewandte Chemie-International Edition, 2022, 62(6), 11099.
116 Noori M S, Karimi K. Biochemical Engineering Journal, 2016, 105, 197.
117 Zhu J J, Jiao N X, Cheng J L, et al. Renewable Energy, 2023, 204, 176.
118 Ma C Y, Xu L H, Zhang C, et al. Bioresource Technology, 2021, 341, 125828.
119 Han Z M, Sun W B, Yang K P, et al. Angewandte Chemie International Edition, 2023, 62(6), e202211099.
120 Lopatina A, Anugwom I, Esmaeili M, et al. Cellulose, 2020, 27, 9505.
121 Ponnusamy V K, Dinh Duc N, Dharmaraja J, et al. Bioresource Technology, 2019, 271, 462.
122 Zhu M Q, Wen J L, Su Y Q, et al. Bioresource Technology, 2015, 185, 378.
123 Chen Y J, Zhang L L, Yu J, et al. Royal Society Open Science, 2019, 6(1), 181757.
124 Podschun J, Saake B, Lehnen R. European Polymer Journal, 2015, 67, 1.
125 Halleraker H V, Kalogiannis K, Lappas A, et al. Energies, 2022, 15(13), 4707.
126 Gordobil O, Egüés I, Labidi J. Reactive & Functional Polymers, 2016, 104, 45.
127 Tang D R, Chen T Y, Li M A, et al. Transactions of China Pulp and Paper, 2024, 39 (1), 137 (in Chinese).
唐德容, 陈天影, 李勉, 等. 中国造纸学报, 2024, 39(1), 137.
128 Abik F, Palasingh C, Bhattarai M, et al. Journal of Agricultural and Food Chemistry, 2023, 71(6), 2667.
129 Mendes F R S, Bastos M S R, Mendes L G, et al. Food Hydrocolloids, 2017, 70, 181.
130 Chen G G, Hu Y J, Peng F, et al. Chemical Engineering Journal, 2018, 337, 436.
131 Horn S J, Nguyen Q D, Westereng B, et al. Biomass and Bioenergy, 2011, 35(12), 4879.
132 La Rosa S L, Kachrimanidou V, Buffetto F, et al. Msphere, 2019, 4(1), e00554-18.
133 Chaturvedi V, Verma P. 3 Biotech, 2013, 3, 415.
134 Kim J S, Lee Y, Kim T H. Bioresource Technology, 2016, 199, 42.
135 Bharadwaj A S, Dev S, Zhuang J, et al. Bioresource Technology, 2023, 368, 128339.
136 Li J J, Li X J, Luo Y S, et al. Manufacturing and Mechanical Engineering (MMME), 2016, 30, 73.
137 Villasante A, Laina R, Rojas J A M, et al. Forest Systems, 2013, 22(3), 416.
138 Chen S Y, Xue Z H, Liu J W, et al. Journal of Northwest Forestry University, 2018, 33 (2), 193 (in Chinese).
陈思禹, 薛振华, 刘金炜, 等. 西北林学院学报, 2018, 33(2), 193.
139 Xiao S L, Chen C J, Xia Q Q, et al. Science, 2021, 374(6566), 465.
140 Chen C J, Song J W, Cheng J, et al. ACS Nano, 2020, 14(12), 16723.
141 Li R R, Wang C G, Liu C Q. China Forest Products Industry, 2019, 46 (7), 23 (in Chinese).
李荣荣, 王传贵, 刘成倩. 林产工业, 2019, 46(7), 23.
142 Xia J W, Zhang Y L, Cai J B. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2013, 42 (5), 543 (in Chinese).
夏金尉, 张耀丽, 蔡家斌. 福建农林大学学报(自然科学版), 2013, 42(5), 543.
143 Weng X, Zhou Y D, Fu Z Y, et al. Journal of Wood Science, 2021, 67(1), 13.
144 Weng X, Zhou Y D, Fu Z Y, et al. Forests, 2020, 11(7), 772.
145 He Z B, Yang F, Yi S L, et al. Drying Technology, 2012, 30(15), 1750.
146 Ren K, Xia Q Q, Liu Y Z, et al. Composites Science and Technology, 2021, 207, 108698.
147 Yu Z M, Zhao L. Journal of Beijing Forestry University, 1998(5), 123 (in Chinese).
于志明, 赵立. 北京林业大学学报, 1998(5), 123.
148 Wang X Q, Yu Z M, Zhang Y. Journal of Fujian Agriculture and Fo-restry University (Natural Science Edition), 2016, 45 (3), 331 (in Chinese).
王晓倩, 于志明, 张扬. 福建农林大学学报(自然科学版), 2016, 45(3), 331.
149 Hu J H, Lv W H, Li L, et al. Journal of Northeast Forestry University, 2023, 51(6), 125 (in Chinese).
胡极航, 吕文华, 李黎, 等. 东北林业大学学报, 2023, 51(6), 125.
150 Tarmian A, Zahedi T I, Oladi R, et al. European Journal of Wood and Wood Products, 2020, 78, 635.
151 Long S F, Zhang M, An C C. Acta Materiae Compositae Sinica, 2024, 41(6), 2863 (in Chinese).
龙寿富, 张明, 安聪聪. 复合材料学报, 2024, 41(6), 2863.
152 Jia C, Li T, Chen C J, et al. Nano Energy, 2017, 36, 366.
153 Li T, Zhu M W, Yang Z, et al. Advanced Energy Materials, 2016, 6(22), 1601122.
154 Wu Y, Tang C Y, Wu J M, et al. Journal of Forestry Engineering, 2018, 3(4), 12 (in Chinese).
吴燕, 唐彩云, 吴佳敏, 等. 林业工程学报, 2018, 3(4), 12.
155 Bi Z H, Li T W, Su H, et al. Acs Sustainable Chemistry & Engineering, 2018, 6(7), 9314.
156 Wu J, Wu Y, Yang F, et al. Composites Part A-Applied Science and Manufacturing, 2019, 117, 324.
157 Chutturi M, Gillela S, Yadav S M, et al. Science of the Total Environment, 2023, 864, 161067.
158 Gan W, Chen C, Giroux M, et al. Chemistry of Materials, 2020, 32(12), 5280.
159 Wang D, Peng L, Zhu G, et al. BioResources, 2014, 9(4), 7504.
160 Daeepour Z, Lashgari A, Roohnia M, et al. Iranian Journal of Wood and Paper Science Research Vol, 2024, 39(1), 28.
161 Zamaninasab S, Lashgari A, Roohnia M, et al. BioResources, 2023, 18(3), 5085.
162 Miao Y, Li R, Qian X, et al. Annals of Forest Science, 2021, 78(1), 24.
[1] 董洪年, 杨明, 林天一, 陈沛然, 魏婷婷. 针刺密度对碳/碳复合材料力学行为影响的仿真分析[J]. 材料导报, 2025, 39(9): 23120170-6.
[2] 夏益健, 张宇, 张云升, 朱微微, 朱文轩. 磨细凝灰岩制备机制砂混凝土力学性能研究[J]. 材料导报, 2025, 39(9): 24030199-7.
[3] 钱如胜, 叶志波, 张云升, 赵儒泽, 孔德玉, 杨杨, 聂海波. 固碳强化再生粗骨料对其混凝土力学强度及体积稳定性的影响[J]. 材料导报, 2025, 39(9): 24020155-6.
[4] 燕伟, 李驰, 邢渊浩, 高瑜. 循环流化床多元固废粉煤灰基水泥胶砂固碳试验研究[J]. 材料导报, 2025, 39(9): 24010111-7.
[5] 陈港明, 王辉, 黄雪飞. 温轧对低铬FeCrAl合金显微组织及室温和高温力学性能的影响[J]. 材料导报, 2025, 39(9): 24060057-11.
[6] 陈继伟, 朱慧雯, 王海镔, 桑建权, 李艳花, 熊芬, 罗建新. 利用Hofmeister效应一步法制备离子导电耐低温强韧PVA水凝胶[J]. 材料导报, 2025, 39(9): 24050045-7.
[7] 陈永达, 胡智淇, 关岩, 常钧, 陈兵. 羟丙基甲基纤维素与硅烷偶联剂对磷酸镁基钢结构防火涂料性能的影响[J]. 材料导报, 2025, 39(8): 24010194-7.
[8] 雒亿平, 邢美光, 王德法, 易万成, 杨连碧, 薛国斌. 赤铁矿对偏高岭土基地聚物力学性能及反应机理的影响[J]. 材料导报, 2025, 39(8): 24040075-8.
[9] 李琼, 安宝峰, 苏睿, 乔宏霞, 王超群. 废玻璃粉透水混凝土物理性能及复合胶凝体系微观机理研究[J]. 材料导报, 2025, 39(8): 23100186-11.
[10] 程焱, 张弦, 苏志诚, 刘静, 吴开明. 具有TRIP效应的先进高强度钢力学性能及腐蚀行为的研究进展[J]. 材料导报, 2025, 39(8): 24020115-8.
[11] 徐焜, 黄子悦, 程云浦, 钱小妹. GNPs改性环氧复合材料等效弹性性能数值预测模型[J]. 材料导报, 2025, 39(8): 24040190-4.
[12] 董硕, 郑立森, 史奉伟, 王来, 刘哲. 钢纤维地聚物再生混凝土力学性能及强度指标换算[J]. 材料导报, 2025, 39(7): 24100219-8.
[13] 谢昭男, 陈军红, 黄西成, 邱勇. 橡胶的热老化力学性能与本构关系研究进展[J]. 材料导报, 2025, 39(7): 23120036-16.
[14] 段明翰, 覃源, 李阳, 耿凯强. 寒冷地区腈纶纤维混凝土力学性能及多层感知器神经网络预测[J]. 材料导报, 2025, 39(6): 23110143-9.
[15] 杨旭, 张天理, 朱志明, 徐连勇, 陈赓, 杨尚磊, 方乃文. 纳米颗粒对铝合金焊接凝固裂纹抑制机理及影响因素的研究进展[J]. 材料导报, 2025, 39(6): 24030070-10.
[1] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[2] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[3] JIA Zhihong, WENG Yaoyao, DING Lipeng, CHENG Tao, LIU Yingying, LIU Qing. Sn Microalloying for Aluminum Alloys: Strengthening Effects and Mechanisms[J]. Materials Reports, 2017, 31(9): 123 -127 .
[4] WANG Ru, ZHANG Shaokang, WANG Gaoyong. Influence and Mechanism of Mineral Admixtures on Setting and Hardening of Styrene-Butadiene Copolymer/Cement Composite Cementitious Material[J]. Materials Reports, 2017, 31(24): 69 -73 .
[5] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[6] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[7] LIU Guoyi, LIU Yuanjun, ZHAO Xiaoming. A Study on Protecting Efficiency to the Radiative Heat of the Outer Fabric for the Fire Proximity Suits[J]. Materials Reports, 2017, 31(22): 116 -120 .
[8] ZHANG Wangxi, WANG Yanzhi, LIANG Baoyan, LI Qiquan, LUO Wei, SUN Changhong, CHENG Xiaozhe, SUN Yuzhou. Review on the Development of Nanodiamonds Used as Functional Materials[J]. Materials Reports, 2018, 32(13): 2183 -2188 .
[9] YANG Fang, ZHANG Long, YU Kun, QI Tianjiao, GUAN Debin. Recent Advances in Humidity Sensitivity of Graphene[J]. Materials Reports, 2018, 32(17): 2940 -2948 .
[10] TIAN Yaqiang, LI Wang, ZHENG Xiaoping, WEI Yingli, SONG Jinying, CHEN Liansheng. Application of Alloy Elements in Quenching and Partitioning Steel:an Overview[J]. Materials Reports, 2019, 33(7): 1109 -1118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed