Please wait a minute...
材料导报  2025, Vol. 39 Issue (17): 24090106-8    https://doi.org/10.11896/cldb.24090106
  高分子与聚合物基复合材料 |
载荷作用下木材的变形和破坏行为机制及影响因素研究进展
初石民1, 李芸琪1, 林兰英1,*, 王东2, 傅峰1
1 中国林业科学研究院木材工业研究所,北京 100091
2 西北工业大学文化遗产研究院,西安 710072
Research Progress on Deformation and Fracture Behavior Mechanisms of Wood Under Load and Its Influencing Factors
CHU Shimin1, LI Yunqi1, LIN Lanying1,*, WANG Dong2, FU Feng1
1 Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China
2 Northwestern Polytechnical University of Culture and Heritage, Xi'an 710072, China
下载:  全 文 ( PDF ) ( 20495KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着绿色、低碳、环保材料需求的不断增长,木质材料及其衍生产品的应用领域日益扩展。在木质产品的生产过程中,严格控制材料变形至关重要;此外,在实际使用过程中,木质材料在受外部载荷时出现的变形和破坏现象也普遍存在。深入理解木材在外部载荷作用下的变形和破坏行为,对于木材科学与工程领域,既是一个核心研究课题,也是一个技术挑战。这对于木质材料及衍生产品的设计、安全使用以及健康监测等具有极其重要的意义。基于此,本文总结并分析了木材不同尺度单元的结构及其界面对力学行为的影响,阐述了木材在拉伸、压缩和弯曲载荷作用下的变形和破坏规律,并探讨了温度、湿度及湿热耦合作用对木材力学行为的影响机制,以期为预测木材的变形和破坏行为提供科学依据,为木质材料的多尺度结构设计提供借鉴和参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
初石民
李芸琪
林兰英
王东
傅峰
关键词:  木材  多尺度结构  界面  外载荷  失效  温湿度    
Abstract: With the increasing demand for green, low-carbon, and eco-friendly materials, the applications of wood materials and their derivatives are expanding. During the production process of these wood-based products, strict control of material deformation is of paramount importance. Moreover, deformation and damage of wood materials under external loads are common in practical applications. Therefore, a profound understanding of the deformation and fracture of wood under external loads is a central research topic and a technical challenge in wood science and engineering, with significant implications for the design, safe use, and health monitoring of wood materials and their derivatives. This paper summarizes and analyzes the effects of the structure and interfaces at different scales on the mechanical behavior of wood, elucidates the deformation and fracture patterns under tensile, compressive, and bending loads, and explores the influence of temperature, humidity, and their combined effects on mechanical behavior. It attempt to provide a scientific basis for predicting the deformation and fracture of wood, to offer insights for the multi-scale structural design of wood materials as the same.
Key words:  wood    multi-scale structure    interface    external load    failure    temperature and humidity
发布日期:  2025-08-28
ZTFLH:  S781  
基金资助: 中央级公益性科研院所基本科研业务费专项资金(CAFYBB2020ZA003)
通讯作者:  *林兰英,博士,中国林业科学研究院木材工业研究所研究员,博士研究生导师。目前主要从事木竹材料界面评价与表征、木竹材功能化预处理等方面的研究。linly@caf.ac.cn   
作者简介:  初石民,中国林业科学研究院木材工业研究所硕博连读研究生,在林兰英研究员的指导下进行研究。目前主要研究领域为木材的多尺度力学行为及结构设计。
引用本文:    
初石民, 李芸琪, 林兰英, 王东, 傅峰. 载荷作用下木材的变形和破坏行为机制及影响因素研究进展[J]. 材料导报, 2025, 39(17): 24090106-8.
CHU Shimin, LI Yunqi, LIN Lanying, WANG Dong, FU Feng. Research Progress on Deformation and Fracture Behavior Mechanisms of Wood Under Load and Its Influencing Factors. Materials Reports, 2025, 39(17): 24090106-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24090106  或          https://www.mater-rep.com/CN/Y2025/V39/I17/24090106
1 Wu Y Q. Journal of Central South University of Forestry & Technology, 2021, 41(1), 1(in Chinese).
吴义强. 中南林业科技大学学报, 2021, 41(1), 1.
2 Song J W, Chen C J, Zhu S Z, et al. Nature, 2018, 554(7691), 224.
3 Huang R F, Feng S H, Gao Z Q, et al. Holzforschung, 2023, 77(8), 629.
4 Lu Y. Chinese Journal of Wood Science and Technology, 2022, 36(2), 1(in Chinese).
卢芸. 木材科学与技术, 2022, 36(2), 1.
5 Geckeler K E, Rupp F, Geis-Gerstorfer J. Advanced Materials, 1997, 9(6), 513.
6 Barthelat F, Yin Z, Buehler M J. Nature Reviews Materials, 2016, 1(4), 1.
7 Meyers M A, McKittrick J, Chen P Y. Science, 2013, 339(6121), 773.
8 Liu Z Q, Zhang Z F, Ritchie R O. Advanced Functional Materials, 2020, 30(10), 1908121.
9 Friend A D, Eckes-Shephard A H, Tupker Q. Nature Communication, 2022, 13(1), 7824.
10 Wang D, Lin L Y, Fu F. Scientia Silvae Sinicae, 2020, 56(8), 141(in Chinese).
王东, 林兰英, 傅峰. 林业科学, 2020, 56(8), 141.
11 Kurata Y, Mori Y, Ishida A, et al. Journal of Wood Chemistry and Technology, 2018, 38(3), 254.
12 Zhao W W. Accurate structure and micromechanics of Chinese fir cell wall. Master's Thesis, Nanjing Forestry University, China, 2022(in Chinese).
赵婉婉. 杉木管胞细胞壁精细结构及其微观力学的研究. 硕士学位论文, 南京林业大学. 2022.
13 Konukcu A C, Quin F, Zhang J L. European Journal of Wood and Wood Products, 2021, 79(6), 1495.
14 Wang D, Lin L Y, Fu F, et al. Holzforschung, 2020, 74(7), 715.
15 Wang D. Wood fracture mechanisms under longitudinal tensile and bend loading. Ph. D. Thesis, Nanjing Forestry University, China, 2020(in Chinese).
王东. 顺纹拉伸和弯曲作用下的木材破坏机理研究. 博士学位论文, 南京林业大学. 2020.
16 Sanabria S J, Baensch F, Zauner M, et al. Scientific Reports, 2020, 10(1), 21615.
17 Qin L Z, Lin L Y, Fu F, et al. Journal of Materials Science, 2017, 53(1), 549.
18 Hao X, Li S N, Yang C M, et al. Scientia Silvae Sinicae, 2023, 59(11), 118(in Chinese).
郝秀, 李澍农, 杨春梅, 等. 林业科学, 2023, 59(11), 118.
19 Guo F, Altaner C M, Jarvis M C. Holzforschung, 2020, 74(12), 1079.
20 Maaß M C, Saleh S, Militz H, et al. Planta, 2022, 256(4), 75.
21 Adobes-Vidal M, Frey M, Keplinger T. Journal of Structural Biology, 2020, 211(2), 107532.
22 Maaß M C, Saleh S, Militz H, et al. Advanced Materials, 2020, 32(16), 1907693.
23 Shao Z P. Scientia Silvae Sinicae, 2007, 43(4), 107(in Chinese).
邵卓平. 林业科学, 2007, 43(4), 107.
24 Kurei T, Sakai S, Nakaba S, et al. International Journal of Biological Macromolecules, 2024, 259(2), 129270.
25 Saavedra F E I, Friswell M I. International Journal of Solids and Structures, 2013, 50(13), 2050.
26 Chen M Y, Zhang C, Ke L L. Journal of the Mechanics and Physics of Solids, 2023, 175, 105296.
27 Altaner C M, Jarvis M C. Journal of Theoretical Biology, 2008, 253(3), 434.
28 Spies P A, Keplinger T, Horbelt N, et al. Carbohydrate Polymers, 2022, 296, 119922.
29 Gindl W, Teischinger A. Composites Part A:Applied Science and Manufacturing, 2002, 33(12), 1623.
30 Fu Z Y, Lu Y, Wu G F, et al. Progress in Materials Science, 2025, 147, 101354.
31 Zhu H L, Zhu S Z, Jia Z, et al. Proceedings of the National Academy of Sciences, 2015, 112(29), 8971.
32 Song R, Zheng H N, Song J W, et al. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(2), 327(in Chinese).
宋睿, 郑浩南, 宋建伟, 等. 力学学报, 2024, 56(2), 327.
33 Chen C J, Kuang Y D, Zhu S Z, et al. Nature Reviews Materials, 2020, 5(9), 642.
34 Long K Y, Wang D, Lin L Y, et al. Transactions of China Pulp and Paper, 2021, 36(1), 88 (in Chinese).
龙克莹, 王东, 林兰英, 等. 中国造纸学报, 2021, 36(1), 88.
35 Gong C Z, Liu Y X, Cui Y Z, et al. Journal of Northeast Forestry University, 2007, 35(6), 7(in Chinese).
巩翠芝, 刘一星, 崔永志, 等. 东北林业大学学报, 2007, 35(6), 7.
36 Reiterer A, Lichtenegger H, Fratzl P, et al. Journal of Materials Science, 2001, 36, 4681.
37 Davies G W. Holzforschung, 1968, 22(6), 177.
38 Wang D, Lin L Y, Fu F, et al. Journal of Wood Science, 2019, 65, 58.
39 Thomas L H, Altaner C M, Forsyth V T, et al. Scientific Reports, 2021, 11(1), 453.
40 Hao H L, Tam L H, Lu Y, et al. Composites Part B:Engineering, 2018, 151, 222.
41 Jin K, Qin Z, Buehler M J. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 42, 198.
42 Keckes J, Burgert I, Frühmann K, et al. Nature Materials, 2003, 2(12), 810.
43 Weinkamer R, Fratzl P. Materials Science and Engineering:C, 2011, 31(6), 1164.
44 Guo F, Wang J H, Liu W X, et al. Carbohydrate Polymers, 2024, 334, 122024.
45 Guo F, Altaner C M. Carbohydrate Polymers, 2018, 197, 1.
46 Li A X, Lyu J X, Jiang J L. Scientia Silvae Sinicae, 2017, 53(12), 136(in Chinese).
李安鑫, 吕建雄, 蒋佳荔. 林业科学, 2017, 53(12), 136.
47 Dogu D, Tuncer F D, Bakir D, et al. BioResources, 2017, 12(3), 5279.
48 Huang C, Gong M, Chui Y H, et al. Journal of Bioresources and Bioproducts, 2020, 5(3), 186.
49 Wu G F, Shen Y L, Fu F, et al. Industrial Crops and Products, 2023, 205, 117510.
50 Mäkinen T, Halonen A, Koivisto J, et al. Physical Review Materials, 2022, 6(7), L070601.
51 Zauner M, Stampanoni M, Niemz P. Holzforschung, 2016, 70(2), 179.
52 Deng Q, Li S, Chen Y P. Computational Materials Science, 2012, 62, 221.
53 Zhong W Z, Zhang Z X, Chen X W, et al. Acta Mechanica Sinica, 2021, 37(7), 1136.
54 Yan S, Eichhorn S J, Toumpanaki E. Wood Science and Technology, 2022, 56(4), 1007.
55 Fortino S, Hradil P, Salminen L I, et al. Journal of Materials Science, 2014, 50(1), 482.
56 Felhofer M, Bock P, Singh A, et al. Nano Letters, 2020, 20(4), 2647.
57 Ren H Q, Jiang Z H. Scientia Silvae Sinicae, 2001, 37(3), 118(in Chinese).
任海青, 江泽慧. 林业科学, 2001, 37(3), 118.
58 Wang D, Lin L Y, Fu F, et al. Wood Science and Technology, 2019, 53(6), 1295.
59 Zhang M L, Li J Q, Zhang Q H, et al. Journal of Forestry Engineering, 2022, 7(2), 159(in Chinese).
张美林, 李俊萩, 张晴晖, 等. 林业工程学报, 2022, 7(2), 159.
60 Li M, Zhao Y, Mao F L, et al. Journal of Wood Science, 2024, 70(1), 13.
61 Zhao D, Ma R Y, Yu L C. Journal of Beijing Forestry University, 2024, 46(3), 123(in Chinese).
赵东, 马荣宇, 于立川. 北京林业大学学报, 2024, 46(3), 123.
62 Armstrong L D, Christensen G N. Nature, 1961, 191, 869.
63 Arriaga F, Wang X P, Ìñiguez-González G, et al. Forests, 2023, 14(6), 1202.
64 Widehammar S. Experimental Mechanics, 2004, 44(1), 44.
65 Luo X, Zhao D L, Xue Z H, et al. Journal of Northwest Forestry University, 2022, 37(5), 218(in Chinese).
骆雪, 赵栋梁, 薛振华, 等. 西北林学院学报, 2022, 37(5), 218.
66 Jing S S, Wu L P, Siciliano A P, et al. ACS Nano, 2023, 17(22), 22196.
67 Paajanen A, Zitting A, Rautkari L, et al. Nano Letters, 2022, 22(13), 5143.
68 Fernandes A N, Thomas L H, Altaner C M, et al. Proceedings of the National Academy of Sciences, 2011, 108(47), E1195.
69 Chen M Y, Zhang C, Ke L L. Composites Part A:Applied Science and Manufacturing, 2024, 177, 107889.
70 Zhang C, Chen M Y, Keten S, et al. Science Advances, 2021, 7(37), eabi8919.
71 Startsev O V, Makhonkov A, Erofeev V, et al. Wood Material Science & Engineering, 2015, 12(1), 55.
72 Altgen M, Uimonen T, Rautkari L. Polymer Degradation and Stability, 2018, 147, 197.
73 Uhmeier A, Morooka T, Norimoto M. Holzforschung, 1998, 52(1), 77.
74 Wang X Z, Huang Y Q, Lv C L, et al. Wood Material Science & Engineering, 2022, 18(2), 517.
75 Wang W, Wang Y T, Li X N. Biomass Chemical Engineering, 2019, 53(3), 33(in Chinese).
王巍, 王云婷, 李新宁. 生物质化学工程, 2019, 53(3), 33.
76 Zhang B, Yang J Q, Liu Y, et al. Cellulose, 2022, 29(12), 6565.
77 Li J, Kasal B. Biomacromolecules, 2022, 23(4), 1601.
78 Horiyama H, Miyoshi Y, Kojiro K, et al. Journal of Wood Science, 2023, 69(1), 30.
79 Youssefian S, Vandadi M, Jakes J E, et al. Biomacromolecules, 2024, 25(2), 666.
80 Vural D, Smith J C, Petridis L. Physical Chemistry Chemical Physics, 2018, 20(31), 20504.
[1] 张红, 鄢文, 李楠, 张会, 陈哲, 李维泰. 一维陶瓷相增强的含碳耐火材料研究进展[J]. 材料导报, 2025, 39(9): 24070074-9.
[2] 张龙, 姚旭文, 车春霞, 秦智, 李国洲, 韩迎红, 杨博. Janus粒子增强PP/PMMA共混聚合物材料的力学和热稳定性能的研究[J]. 材料导报, 2025, 39(9): 24010255-8.
[3] 孟小丽, 李晓艳, 闫怡红, 李文博. 基于分子动力学的沥青-集料界面动态黏附及失效特性研究[J]. 材料导报, 2025, 39(8): 24010159-8.
[4] 王艳, 常天风, 杨子凡, 李伊岚. 超高性能混凝土-普通混凝土界面粘结性能研究[J]. 材料导报, 2025, 39(7): 24020129-6.
[5] 朱燕丽, 马川义, 张吉哲, 范秀泽, 何亮, 姚占勇. 沥青胶浆-集料界面水盐侵蚀损伤与多因素影响规律研究[J]. 材料导报, 2025, 39(6): 24010156-8.
[6] 王耀, 郑新颜, 黄伟, 吴应雄, 黄雅莹, 张恒春, 张峰. 超高性能混凝土-花岗岩石材界面的抗剪性能研究[J]. 材料导报, 2025, 39(6): 24010107-10.
[7] 涂文斌, 胡志华, 邹雨柔, 刘冠鹏, 王善林, 陈玉华. 时效时间和Sb添加对Sn-9Zn-3Bi/Cu焊点界面金属间化合物生长行为的影响[J]. 材料导报, 2025, 39(6): 23120193-6.
[8] 陈浩霖, 赵佳薇, 张俊豪, 于博, 张强飞, 罗倪, 刘振国. SAMs在n-i-p型钙钛矿太阳能电池界面工程中的应用[J]. 材料导报, 2025, 39(5): 24010233-12.
[9] 王志航, 白二雷, 黄河, 杜宇航, 任彪. 碳纤维增强水泥基材料界面改性研究进展[J]. 材料导报, 2025, 39(5): 24020133-9.
[10] 夏晋, 郑宇航, 汪雨青. 基于多尺度模型的混凝土有效电阻率与几何代表尺寸研究[J]. 材料导报, 2025, 39(4): 24020001-7.
[11] 张志春, 王晓庆, 吴明海, 杨凯. 加热模式对Cu-Al微电阻点焊过程中电极烧损行为的影响[J]. 材料导报, 2025, 39(4): 23100261-9.
[12] 邓泽斌, 刘静, 赖升晖, 刘达, 黄金灼, 袁光明. 苯丙氨酸衍生物诱导SiO2矿化杉木复合材的制备及性能研究[J]. 材料导报, 2025, 39(4): 24020024-8.
[13] 潘元帅, 王刚, 冯海霞, 柳军, 袁波, 田朋丹, 韩艺辉. 镍基高温合金与耐火材料界面特性研究[J]. 材料导报, 2025, 39(3): 22100206-7.
[14] 夏正辉, 汪丹丹, 丁健翔, 张培根, 田无边, 王丽瑶, 李大平, 魏坤霞, 魏伟, 孙正明. MAX相增强金属基复合材料的研究进展[J]. 材料导报, 2025, 39(17): 24100130-17.
[15] 胡文龙, 杨露露, 苗磊, 黄频波, 张树正, 赵志博, 仓钰, 杨斌. 基于金属多酚网络的碳纤维表面改性及其增强环氧树脂复合材料界面性能[J]. 材料导报, 2025, 39(17): 24070023-6.
[1] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[2] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[3] JIA Zhihong, WENG Yaoyao, DING Lipeng, CHENG Tao, LIU Yingying, LIU Qing. Sn Microalloying for Aluminum Alloys: Strengthening Effects and Mechanisms[J]. Materials Reports, 2017, 31(9): 123 -127 .
[4] WANG Ru, ZHANG Shaokang, WANG Gaoyong. Influence and Mechanism of Mineral Admixtures on Setting and Hardening of Styrene-Butadiene Copolymer/Cement Composite Cementitious Material[J]. Materials Reports, 2017, 31(24): 69 -73 .
[5] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[6] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[7] LIU Guoyi, LIU Yuanjun, ZHAO Xiaoming. A Study on Protecting Efficiency to the Radiative Heat of the Outer Fabric for the Fire Proximity Suits[J]. Materials Reports, 2017, 31(22): 116 -120 .
[8] ZHANG Wangxi, WANG Yanzhi, LIANG Baoyan, LI Qiquan, LUO Wei, SUN Changhong, CHENG Xiaozhe, SUN Yuzhou. Review on the Development of Nanodiamonds Used as Functional Materials[J]. Materials Reports, 2018, 32(13): 2183 -2188 .
[9] YANG Fang, ZHANG Long, YU Kun, QI Tianjiao, GUAN Debin. Recent Advances in Humidity Sensitivity of Graphene[J]. Materials Reports, 2018, 32(17): 2940 -2948 .
[10] TIAN Yaqiang, LI Wang, ZHENG Xiaoping, WEI Yingli, SONG Jinying, CHEN Liansheng. Application of Alloy Elements in Quenching and Partitioning Steel:an Overview[J]. Materials Reports, 2019, 33(7): 1109 -1118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed