Please wait a minute...
材料导报  2025, Vol. 39 Issue (17): 24100130-17    https://doi.org/10.11896/cldb.24100130
  金属与金属基复合材料 |
MAX相增强金属基复合材料的研究进展
夏正辉1, 汪丹丹1,*, 丁健翔2, 张培根3, 田无边3, 王丽瑶1, 李大平1, 魏坤霞1, 魏伟1, 孙正明3
1 常州大学材料科学与工程学院,江苏 常州 213164
2 安徽工业大学材料科学与工程学院,安徽 马鞍山 243002
3 东南大学材料科学与工程学院,南京 211102
Research Progress of MAX Phase Reinforced Metal Matrix Composites
XIA Zhenghui1, WANG Dandan1,*, DING Jianxiang2, ZHANG Peigen3, TIAN Wubian3, WANG Liyao1, LI Daping1, WEI Kunxia1, WEI Wei1, SUN Zhengming3
1 School of Materials Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, China
2 School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan 243002, Anhui, China
3 School of Materials Science and Engineering, Southeast University, Nanjing 211102, China
下载:  全 文 ( PDF ) ( 121085KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 新型三元层状化合物MAX相因特殊的晶体结构而兼具金属和陶瓷的优良性能,是制备金属基复合材料的理想增强体。采用粉末冶金、浸渗法、机械搅拌铸造等方法制备了MAX相增强金属基复合材料,并深入研究了材料的成分、界面反应、制备工艺对其抗电弧侵蚀、摩擦磨损、阻尼等性能的影响。研究表明其在电接触、核反应堆、微波吸收和机械轴承等领域展现了广阔的应用前景。本文介绍了MAX相的性能和应用以及MAX相增强金属基复合材料的制备方法,并就MAX相增强金属基复合材料的微观组织和性能进行了综述,最后对其未来的研究方向进行了展望和总结。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
夏正辉
汪丹丹
丁健翔
张培根
田无边
王丽瑶
李大平
魏坤霞
魏伟
孙正明
关键词:  MAX相  金属基复合材料  微观组织  界面反应  力学性能  抗电弧侵蚀性能    
Abstract: MAX phases are a family of layered ternary compounds with excellent properties of both metals and ceramics due to their special crystal structure, making them ideal reinforcement phases for the preparation of metal matrix composites. MAX phase reinforced metal matrix composites were prepared by powder metallurgy, infiltration method, mechanical stirring casting and other methods. The effects of composition, interfacial reaction and preparation process on the properties, such as arc erosion resistance, friction resistance, and damping capacity were studied. These show that MAX has bright application prospects in the fields of electrical contact, nuclear reactor, microwave absorption and mechanical bearing, etc. In this paper, the properties and applications of MAX phases are introduced, and the preparation, microstructure and pro-perties of MAX phase reinforced metal matrix composites are reviewed. Finally, future research directions are prospected.
Key words:  MAX phase    metal matrix composite    microstructure    interfacial reaction    mechanical property    arc erosion resistance
发布日期:  2025-08-28
ZTFLH:  TQ174  
基金资助: 国家自然科学基金(52302057);江苏省自然科学基金青年项目(BK20220627)
通讯作者:  *汪丹丹,博士,常州大学材料科学与工程学院讲师、硕士研究生导师。目前主要从事MAX相、MAX相增强金属基复合材料、电接触材料、镁合金等方面的研究工作。ddwang@cczu.edu.cn   
作者简介:  夏正辉,常州大学材料科学与工程学院硕士研究生,在汪丹丹导师的指导下进行研究。目前主要研究领域为MAX相增强金属基复合材料。
引用本文:    
夏正辉, 汪丹丹, 丁健翔, 张培根, 田无边, 王丽瑶, 李大平, 魏坤霞, 魏伟, 孙正明. MAX相增强金属基复合材料的研究进展[J]. 材料导报, 2025, 39(17): 24100130-17.
XIA Zhenghui, WANG Dandan, DING Jianxiang, ZHANG Peigen, TIAN Wubian, WANG Liyao, LI Daping, WEI Kunxia, WEI Wei, SUN Zhengming. Research Progress of MAX Phase Reinforced Metal Matrix Composites. Materials Reports, 2025, 39(17): 24100130-17.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24100130  或          https://www.mater-rep.com/CN/Y2025/V39/I17/24100130
1 Miracle D B. Composites Science and Technology, 2005, 65, 2526.
2 Barsoum M W, El-Raghy T. American Scientist, 2001, 89, 334.
3 Sun Z M. International Materials Reviews, 2011, 56, 143.
4 Ding K K, Zhang K G, Ding J X, et al. Ceramics International, 2022, 48, 190.
5 Lu J R, Zhou Y, Zheng Y, et al. Advances in Applied Ceramics, 2015, 114, 39.
6 Barsoum M W. Progress in Solid State Chemistry, 2000, 28, 201.
7 Li Y B, Lu J, Li M, et al. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 820.
8 Ding H M, Li Y B, Li M, et al. Science, 2023, 379, 1130.
9 Lyu J, Kashkarov E B, Travitzky N, et al. Journal of Materials Science, 2021, 56, 1980.
10 Shorowordi K M, Laoui T, Haseeb A, et al. Journal of Materials Processing Technology, 2003, 142, 738.
11 Ryu H J, Cha S I, Hong S H. Journal of Materials Research, 2003, 18, 2851.
12 Benitez R, Gao H L, O'Neal M, et al. Acta Materialia, 2018, 143, 130.
13 Sun Z M, Li S, Ahuja R, et al. Solid State Communications, 2004, 129, 589.
14 Xu X W, Fu C K, Li Y X, et al. Transactions of Nonferrous Metals Society of China, 2006, 16, S490.
15 Shi S L, Pan W. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2007, 447, 303.
16 Lin Z J, Li M S, Wang J Y, et al. Acta Materialia, 2007, 55, 6182.
17 Zhai W Z, Lu W L, Zhang P, et al. Applied Surface Science, 2018, 436, 1038.
18 Gupta S, Filimonov D, Zaitsev V, et al. Wear, 2008, 264, 270.
19 Naguib M, Kurtoglu M, Presser V, et al. Advanced Materials, 2011, 23, 4248.
20 Zhou Y C, Sun Z M, Chen S Q, et al. Materials Research Innovations, 1998, 2, 142.
21 Chen D Q, Tian X J, Wang H M, et al. Materials Letters, 2014, 129, 98.
22 Frodelius J, Sonestedt M, Björklund S, et al. Surface and Coatings Technology, 2008, 202, 5976.
23 Ding H M, Li Y B, Li M, et al. Science, 2023, 379, 1130.
24 Zhang Y, Sun Z M, Zhou Y C. Materials Research Innovations, 1999, 3, 80.
25 Zhang M, Tian W B, Zhang P G, et al. International Journal of Minerals Metallurgy and Materials, 2018, 25, 810.
26 Wang S, Zhu S Y, Cheng J, et al. Journal of Alloys and Compounds, 2017, 690, 612.
27 Liu M M, Cui H, Zhao J, et al. Precious Metals, 2018, 39(4), 46 (in Chinese).
刘满门, 崔浩, 赵君, 等. 贵金属, 2018, 39(4), 46.
28 Zhou Z J, Feng Y, Zhao H, et al. Journal of Tribology-Transactions of the Asme, 2020, 142, 4046411.
29 Barat K, Bharata, Venkateswarlu K, et al. Journal of Materials Engineering and Performance, 2023, 32, 4986.
30 Wang W J, Gauthier-Brunet V, Bei G P, et al. Materials Science and Engineering:A, 2011, 530, 168.
31 Liu W Y, Zhang J B, Jin Y M, et al. Materials Research Express, 2017, 4, 116521.
32 Luo X, Zhai H Y, Huang Z Y, et al. Rare Metal Materials and Engineering, 2015, 44(S1), 808 (in Chinese).
罗潇, 翟洪祥, 黄振莺, 等. 稀有金属材料与工程, 2015, 44(S1), 808.
33 Sun Y, Zhou C, Zhao Z M, et al. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2020, 785, 139310.
34 Yu W B, Wang X J, Zhao H B, et al. Journal of Alloys and Compounds, 2017, 702, 199.
35 Pons F, Cherkaoui M, Ilali I, et al. Journal of Electronic Materials, 2010, 39, 456.
36 Chen Y L, Yang C F, Yeh J W, et al. Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science, 2005, 36A, 2441.
37 Wei Z Q. Preparation and properties of Ag/CdO composite electrical contact materials. Ph. D. Thesis, Zhejiang University, China, 2016 (in Chinese).
魏志军. Ag/ZnO电接触材料制备及性能研究. 博士学位论文, 浙江大学, 2016.
38 Jiang P, Li F, Wang Y P. IEEE Transactions on Components and Packaging Technologies, 2006, 29, 420.
39 Liu M M, Chen J L, Cui H, et al. Ceramics International, 2018, 44, 18129.
40 Lu C J, Wang G C, Yang G, et al. Journal of the American Ceramic Society, 2017, 100, 732.
41 Liu M M, Chen J L, Cui H, et al. Materials Letters, 2018, 213, 269.
42 Zhang K G, Ding J X, Ding K K, et al. Journal of Materials Engineering and Performance, 2023, 32, 4270.
43 Zhu Y F, Tian W B, Wang D D, et al. International Journal of Minerals, Metallurgy and Materials, 2021, 28, 1836.
44 Wu C, Wu X, Ding J, et al. Scripta Materialia, 2025, 255, 116343.
45 Wang D D, Tian W B, Lu C J, et al. Journal of Alloys and Compounds, 2021, 857, 157588.
46 Wang D D, Xia Z H, Lu C J, et al. Journal of Materials Research and Technology, 2024, 31, 870.
47 Wang D D, Zhu H Y, Zheng M Y, et al. Journal of Alloys and Compounds, 2023, 961, 170870.
48 Ding J X. Preparation and properties of Ag/MAX composite electrical contact materials. Ph. D. Thesis, Southeast University, China, 2018 (in Chinese).
丁健翔. Ag/MAX复合电触头材料的制备与性能研究. 博士学位论文, 东南大学, 2018.
49 Ding J X, Tian W B, Zhang P G, et al. Journal of Alloys and Compounds, 2018, 740, 669.
50 Ding J X, Tian W B, Zhang P G, et al. Journal of Advanced Ceramics, 2019, 8, 90.
51 Zhou Z J, Feng Y, Zhao H, et al. Ceramics International, 2021, 47, 2319.
52 Ding K, Ding J X, Zhang K G, et al. Ceramics International, 2022, 48, 33670.
53 Wu X, Wu C, Wei X, et al. Journal of Advanced Ceramics, 2024, 13, 176.
54 Wang D D, Tian W B, Ding J X, et al. Journal of Alloys and Compounds, 2020, 820, 153136.
55 Wang D D, Tian W B, Ma A B, et al. Journal of Alloys and Compounds, 2019, 784, 431.
56 Wang D D, Tian W B, Ding J X, et al. Corrosion Science, 2020, 171, 108633.
57 Zhou Y C, Gu W L. International Journal of Materials Research, 2004, 95, 50.
58 Zhang R, Chen B, Liu F, et al. Materials, 2022, 15, 2515.
59 Zarrinfar N, Kennedy A R, Shipway P H. Scripta Materialia, 2004, 50, 949.
60 Naidich Y V, Zhuravlev V S, Gab I I, et al. Journal of the European Ceramic Society, 2008, 28, 717.
61 Li W J, Jiang H, Li B T, et al. Materials Today Physics, 2024, 40, 101333.
62 Zhao Q B, Xun S F, Jiang F, et al. Rare Metals Letters, 2008, 27(10), 32(in Chinese).
赵清碧, 许少凡, 江沣, 等. 稀有金属快报, 2008, 27(10), 32.
63 Zhou Y, Chen B, Wang X, et al. Materials Science and Technology, 2004, 20, 661.
64 Wang Y R, Gao Y M, Fan Y L. Coatings, 2022, 12, 1754.
65 Zhao H, Wang L L, Feng Y, et al. Corrosion Science, 2021, 190, 109649.
66 Zhao H, Feng Y, Qian G, et al. Tribology Letters, 2019, 67, 96.
67 Zhao H, Feng Y, Zhou Z J, et al. Wear, 2020, 444, 203156.
68 Mazaheri Y, Bahiraei M, Jalilvand M M, et al. Materials Chemistry and Physics, 2021, 270, 124790.
69 Zhang J, Liu W, Jin Y, et al. Journal of Alloys and Compounds, 2018, 738, 1.
70 Zhou C L, Wu X Y, Ngai T L, et al. Ceramics International, 2018, 44, 6026.
71 Wang Z J, Ma Y F, Sun K, et al. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2022, 832, 142393.
72 Sun Y, Zhao Z M, Wu G H. Materials Characterization, 2022, 191, 112176.
73 Sun Y, Wu G H. Materials Letters, 2023, 353, 135266.
74 Anasori B, Caspi E N, Barsoum M W. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2014, 618, 511.
75 Wang X J, Wang N Z, Wang L Y, et al. Materials & Design, 2014, 57, 638.
76 Yu W B, Li X B, Vallet M, et al. Mechanics of Materials, 2019, 129, 246.
77 Yu W B, Chen D Q, Tian L, et al. Journal of Materials Science & Technology, 2019, 35, 275.
78 García-Rodríguez S, Torres B, Maroto A, et al. Wear, 2017, 390-391, 1.
79 Yu W B, Pi X F, Chen W T, et al. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2021, 826, 141961.
80 Pi X F. Interfacial regulation and properties of MAX/Mg matrix composites by A-site Al/Si elements. Master's Thesis, Beijing Jiao University, China, 2022 (in Chinese).
皮旭峰. A位Al/Si元素对MAX/Mg基复合材料的界面调控与性能研究. 硕士学位论文, 北京交通大学, 2022.
81 Lakhnik A M, Kirian I M, Rud A D. International Journal of Hydrogen Energy, 2022, 47, 7274.
82 Liu M J, Zhao S C, Xiao X Z, et al. Nano Energy, 2019, 61, 540.
83 Jiao Y D, Huang Z Y, Hu W Q, et al. Materials Science and Enginee-ring:A, 2021, 820, 141524.
84 Wang W J, Zhai H X, Chen L L, et al. Materials Science and Enginee-ring:A, 2016, 670, 351.
85 Chen X H, Zhai H X, Wang W J, et al. Progress in Natural Science-Materials International, 2013, 23, 13.
86 Chen X H, Zhai H X, Song P F, et al. Rare Metal Materials and Engineering, 2011, 40(S1), 499.
87 Chen X H, Zhai H X, Wang W J, et al. Journal of the Chinese Ceramic Society, 2013, 41(3), 309.
88 Jiang J P, Li S B, Hu S J, et al. Materials Chemistry and Physics, 2018, 214, 80.
89 Li H Y, Zhou Y, Chen C, et al. Advances in Applied Ceramics, 2015, 114, 315.
90 Gupta S, Habib M A, Dunnigan R, et al. Journal of Materials Engineering and Performance, 2015, 24, 4071.
91 Tallman D J, Yang J, Pan L, et al. Journal of Nuclear Materials, 2015, 460, 122.
92 Lu B, Yang X J, Zhou J, et al. Journal of Wuhan University of Technology-Materials Science Edition, 2017, 32, 645.
93 Yang B, Li C, Wang X Y, et al. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2023, 871, 144914.
[1] 董洪年, 杨明, 林天一, 陈沛然, 魏婷婷. 针刺密度对碳/碳复合材料力学行为影响的仿真分析[J]. 材料导报, 2025, 39(9): 23120170-6.
[2] 夏益健, 张宇, 张云升, 朱微微, 朱文轩. 磨细凝灰岩制备机制砂混凝土力学性能研究[J]. 材料导报, 2025, 39(9): 24030199-7.
[3] 钱如胜, 叶志波, 张云升, 赵儒泽, 孔德玉, 杨杨, 聂海波. 固碳强化再生粗骨料对其混凝土力学强度及体积稳定性的影响[J]. 材料导报, 2025, 39(9): 24020155-6.
[4] 燕伟, 李驰, 邢渊浩, 高瑜. 循环流化床多元固废粉煤灰基水泥胶砂固碳试验研究[J]. 材料导报, 2025, 39(9): 24010111-7.
[5] 陈港明, 王辉, 黄雪飞. 温轧对低铬FeCrAl合金显微组织及室温和高温力学性能的影响[J]. 材料导报, 2025, 39(9): 24060057-11.
[6] 陈继伟, 朱慧雯, 王海镔, 桑建权, 李艳花, 熊芬, 罗建新. 利用Hofmeister效应一步法制备离子导电耐低温强韧PVA水凝胶[J]. 材料导报, 2025, 39(9): 24050045-7.
[7] 陈永达, 胡智淇, 关岩, 常钧, 陈兵. 羟丙基甲基纤维素与硅烷偶联剂对磷酸镁基钢结构防火涂料性能的影响[J]. 材料导报, 2025, 39(8): 24010194-7.
[8] 雒亿平, 邢美光, 王德法, 易万成, 杨连碧, 薛国斌. 赤铁矿对偏高岭土基地聚物力学性能及反应机理的影响[J]. 材料导报, 2025, 39(8): 24040075-8.
[9] 李琼, 安宝峰, 苏睿, 乔宏霞, 王超群. 废玻璃粉透水混凝土物理性能及复合胶凝体系微观机理研究[J]. 材料导报, 2025, 39(8): 23100186-11.
[10] 程焱, 张弦, 苏志诚, 刘静, 吴开明. 具有TRIP效应的先进高强度钢力学性能及腐蚀行为的研究进展[J]. 材料导报, 2025, 39(8): 24020115-8.
[11] 徐焜, 黄子悦, 程云浦, 钱小妹. GNPs改性环氧复合材料等效弹性性能数值预测模型[J]. 材料导报, 2025, 39(8): 24040190-4.
[12] 董硕, 郑立森, 史奉伟, 王来, 刘哲. 钢纤维地聚物再生混凝土力学性能及强度指标换算[J]. 材料导报, 2025, 39(7): 24100219-8.
[13] 谢昭男, 陈军红, 黄西成, 邱勇. 橡胶的热老化力学性能与本构关系研究进展[J]. 材料导报, 2025, 39(7): 23120036-16.
[14] 段明翰, 覃源, 李阳, 耿凯强. 寒冷地区腈纶纤维混凝土力学性能及多层感知器神经网络预测[J]. 材料导报, 2025, 39(6): 23110143-9.
[15] 杨旭, 张天理, 朱志明, 徐连勇, 陈赓, 杨尚磊, 方乃文. 纳米颗粒对铝合金焊接凝固裂纹抑制机理及影响因素的研究进展[J]. 材料导报, 2025, 39(6): 24030070-10.
[1] Guang MA,Xin CHEN,Licheng LU,Dongqun XIN,Li MENG,Hao WANG,Ling CHENG,Fuyao YANG. Monte Carlo Simulation of the Evolution of Goss Texture in Secondary Recrystallization of Thin Gauge Grain Oriented Silicon Steel[J]. Materials Reports, 2018, 32(2): 313 -315 .
[2] CHEN Jian, XU Hui. Research Progress of Graphene and Its Nanocomposites as Anodes for Lithium Ion Batteries[J]. Materials Reports, 2017, 31(9): 36 -44 .
[3] WANG Tiantian, XU Mengjia, XU Jijin, YU Chun, LU Hao. Influence of Second Welding Thermal Cycle on Reheat Cracking Sensitivity of CGHAZ in T23 Steel[J]. Materials Reports, 2017, 31(12): 56 -59 .
[4] XIE Jiale, YANG Pingping, LI Chang Ming. Stable and High-efficient α-Fe2O3 Based Photoelectrochemical Water Splitting: Rational Materials Design and Charge Carrier Dynamics[J]. Materials Reports, 2018, 32(7): 1037 -1056 .
[5] YANG Shicong, YAO Guowen, ZHANG Jinquan, SHI Kang. The Corrosion Fatigue Characteristic of Steel Strand Experiencing an Artificial Accelerated Salt Fog Ageing[J]. Materials Reports, 2018, 32(12): 1988 -1993 .
[6] HU Yaoqiang, CHEN Fajin, LIU Haining, ZHANG Huifang, WU Zhijian, YE Xiushen. Preparation of Poly(N-isopropylacrylamide) Hydrogel and Its Thermally Induced Aggregation Behavior[J]. Materials Reports, 2018, 32(14): 2491 -2496 .
[7] LI Xiuli, TIE Shengnian. Effect of Quick-dissolving and High-viscosity Carboxymethyl Cellulose Sodium on Properties of Glauber’s Salt-based Composites Phase Change Energy Storage Materials with Different Phase Transition Temperature Gradient[J]. Materials Reports, 2018, 32(22): 3848 -3852 .
[8] CHANG Jingjing. Spin Coating Epitaxial Films[J]. Materials Reports, 2019, 33(12): 1919 -1920 .
[9] REN Xiuxiu, ZHU Yiju, ZHAO Shengxiang, HAN Zhongxi, YAO Lina. The Relationship Between Micromechanical Property and Friction Property of Four Kinds of Energetic Crystals[J]. Materials Reports, 2019, 33(z1): 448 -452 .
[10] ZHUANG Xiaodong, LI Rongxing, YU Xiaohua, XIE Gang, HE Xiaocai, XU Qingxin. Preparation of Lithium Titanate Electrode Materials by Solid Phase Method[J]. Materials Reports, 2019, 33(16): 2654 -2659 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed