Please wait a minute...
材料导报  2025, Vol. 39 Issue (20): 24090190-7    https://doi.org/10.11896/cldb.24090190
  无机非金属及其复合材料 |
钢渣细骨料混凝土断裂性能研究
薛刚*, 邬金月, 许胜, 刘江森, 董伟
内蒙古科技大学土木工程学院,内蒙古 包头 014010
Study on the Fracture Mechanical Properties of Steel Slag Fine Aggregate Concrete
XUE Gang*, WU Jinyue, XU Sheng, LIU Jiangsen, DONG Wei
School of Civil Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, Inner Mongolia, China
下载:  全 文 ( PDF ) ( 7779KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为研究钢渣细骨料混凝土(SSC)的断裂性能,设计四种钢渣掺量(0%、10%、20%、30%)和三种缝高比(0.2、0.3、0.4)的钢渣细骨料混凝土试件进行楔入劈拉试验,测定试件断裂过程中的起裂荷载、峰值荷载和荷载-裂缝口张开位移(P-CMOD)曲线。基于双K断裂理论,计算钢渣细骨料混凝土试件的起裂韧度和失稳断裂韧度等断裂参数,并分析其随钢渣掺量和缝高比的变化规律。结果表明:钢渣细骨料掺量由0%增至30%,混凝土的断裂性能有明显提高,钢渣掺量30%时,起裂韧度和失稳断裂韧度均达到最大值,对断裂性能的提升效果最好。缝高比为0.2~0.4时,钢渣细骨料混凝土的起裂韧度不受缝高比影响,可认为其是材料的固有属性;失稳断裂韧度随着缝高比的增大缓慢下降。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
薛刚
邬金月
许胜
刘江森
董伟
关键词:  钢渣细骨料混凝土  双K断裂模型  断裂能  楔入劈拉试验    
Abstract: To study the fracture performance of steel slag fine aggregate concrete (SSC), wedge splitting tests were conducted on SSC specimens with four different steel slag content levels (0%, 10%, 20% and 30%) and three different seam-height ratios (0.2, 0.3 and 0.4). The initial cracking load, peak load, and load-crack mouth opening displacement (P-CMOD) curves were measured during the fracture process. Based on the double-K fracture theory, fracture parameters such as initial cracking and unstable fracture toughness were calculated, and the variation of SSC fracture parameters with changes in steel slag content and seam-height ratio was analyzed. The results show that when the steel slag fine aggregate content is 0%—30%, the fracture performance of the concrete significantly improves with the increase of the steel fine aggregate content, and has the best enhancement with the maximum value of cracking and unstable fracture toughness when the steel slag content reaches 30%. Additionally, when the seam-height ratio is between 0.2 and 0.4, the initial cracking toughness of SSC is not affected by the seam-height ratio, suggesting it is an inherent property of the material. However, the unstable fracture toughness decreases slowly as the seam-height ratio increases.
Key words:  steel slag fine aggregate concrete    double-K fracture model    fracture energy    wedge splitting tensile test
发布日期:  2025-10-27
ZTFLH:  TU528  
基金资助: 2023年度自治区直属高校基本科研业务费项目(2023RCTD025);国家自然科学基金(52468040)
通讯作者:  *薛刚,工学博士,内蒙古科技大学土木工程学院教授、硕士研究生导师。目前主要从事新型建筑材料、混凝土力学等方面的研究工作。xuegang-2008@126.com   
引用本文:    
薛刚, 邬金月, 许胜, 刘江森, 董伟. 钢渣细骨料混凝土断裂性能研究[J]. 材料导报, 2025, 39(20): 24090190-7.
XUE Gang, WU Jinyue, XU Sheng, LIU Jiangsen, DONG Wei. Study on the Fracture Mechanical Properties of Steel Slag Fine Aggregate Concrete. Materials Reports, 2025, 39(20): 24090190-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24090190  或          https://www.mater-rep.com/CN/Y2025/V39/I20/24090190
1 Li Z N, Shen A Q, Yang X R, et al. Road Materials and Pavement Design, 2023, 24(2), 537.
2 Ho Q V, Huynh T P. Journal of Building Engineering, 2023, 80, 107982.
3 Yi H, Xu G P, Cheng H G, et al. Procedia Environmental Sciences, 2012, 16, 791.
4 Wu B, Yu Y, Chen Z P, et al. Construction and Building Materials, 2018, 187, 50.
5 Gencel O, Karadag O, Oren O H, et al. Construction and Building Materials, 2021, 283, 122783.
6 Fan D Q, Yu R, Shui Z H, et al. Construction and Building Materials, 2021, 306, 124913.
7 Li G, Wang X Z, Zhang X F, et al. Concrete, 2018(4), 53(in Chinese).
李根, 王学志, 张晓飞, 等. 混凝土, 2018(4), 53.
8 Li G, Wang X Z, Zhang X F, et al. Journal of Changjiang River Scientific Research Institute, 2019, 36(2), 139 (in Chinese).
李根, 王学志, 张晓飞, 等. 长江科学院院报, 2019, 36(2), 139.
9 Lu Z D, Yu K Q, Su L, et al. Journal of Building Materials, 2012, 15(6), 836(in Chinese).
陆洲导, 俞可权, 苏磊, 等. 建筑材料学报, 2012, 15(6), 836.
10 Xie J, Yan M L, Liu Y. Engineering Mechanics, 2023, 40(2), 202(in Chinese).
谢剑, 闫明亮, 刘洋. 工程力学, 2023, 40(2), 202.
11 Liu G S, Ye, Y F, Peng J F, et al. New Building Materials, 2023, 50(12), 74(in Chinese).
刘根生, 叶勇芳, 彭竞锋, 等. 新型建筑材料, 2023, 50(12), 74.
12 Chen X Q, Wang Y H, Liu Z H, et al. Journal of Cleaner Production, 2022, 338, 130614.
13 Guo Y C, Xie J H, Zheng W Y, et al. Construction and Building Materials, 2018, 192, 194.
14 Costa L C B, Nogueira M A, Andrade H D, et al. Construction and Building Materials, 2022, 318, 126152.
15 Cheng X, Tian W, Gao J F, et al. Construction and Building Materials, 2022, 344, 128203.
16 Papachristoforou M, Anastasiou E K, Papayianni I. Construction and Building Materials, 2020, 262, 120569.
17 Sun K K, Peng X Q, Chu S H, et al. Construction and Building Materials, 2021, 300, 124024.
18 Wu F, Yu Q L, Brouwers H J H. Construction and Building Materials, 2022, 333, 127445.
19 Kumar H, Varma S. International Journal of Pavement Research and Technology, 2021, 14(2), 232.
20 Skaf M, Pasquini E, Revilla-Cuesta V, et al. Materials, 2019, 12(20), 3306.
21 Díaz-Piloneta M, Terrados-Cristos M, Álvarez-Cabal J V, et al. Materials, 2021, 14(13), 3587.
22 Xu S L, Reinhardt H W. International Journal of Fracture, 1999, 98(2), 111.
23 Xu S L, Reinhardt H W. International Journal of Fracture, 1999, 98(2), 151.
24 Albostami A S, Al-Hamd R K S, Al-Matwari A A. Buildings, 2024, 14(8), 2476.
25 Wang Y, Suraneni P. Construction and Building Materials, 2019, 204, 458.
26 Ortega-López V, Fuente-Alonso J A, Santamaría A, et al. Construction and Building Materials, 2018, 163, 471.
27 Xu W, Zhao S J, Zhang W Z, et al. Buildings, 2024, 14(1), 158.
28 Li C, Cheng Z W, Xie J, et al. Materials Reports, 2017, 31(3), 11(in Chinese).
李超, 陈宗武, 谢君, 等. 材料导报, 2017, 31(3), 11.
29 Rong H, Dong W, Wu Z M, et al. Engineering Mechanics, 2012, 29(1), 162(in Chinese).
荣华, 董伟, 吴智敏, 等. 工程力学, 2012, 29(1), 162.
30 Du M, Wu L, Zheng J M. Water Resources and Hydropower Engineering, 2019, 50(11), 41(in Chinese).
杜敏, 武亮, 张建铭. 水利水电技术, 2019, 50(11), 41.
31 Hu S W, Xie J F, Yu J. Journal of Changjiang River Scientific Research Institute, 2015, 12(2), 114(in Chinese).
胡少伟, 谢建锋, 喻江. 长江科学院学报, 2015, 12(2), 114.
32 Zhao C Y. Experimental research on fracture performance of steel slag concrete. Master’s Thesis, Guangdong University of Technology, China, 2016 (in Chinese).
赵出云. 钢渣混凝土的断裂性能试验研究. 硕士学位论文, 广东工业大学, 2016.
33 Wang Z P, Wu S P, Yang C, et al. Materials, 2022, 15(14), 5005.
34 Lai M H, Zou J J, Yao B Y, et al. Construction and Building Materials, 2021, 277(3), 122269.
[1] 张盼盼, 吕忠. 内置修复剂轻骨料水泥基材料自修复性能及机理研究进展[J]. 材料导报, 2025, 39(19): 24080181-9.
[2] 康天蓓, 梁玉, 梁意博, 王凤池, 周静海. 基于多机器学习模型的再生混凝土抗盐冻性能预测[J]. 材料导报, 2025, 39(19): 24100032-11.
[3] 黄斌彬, 曾磊, 汪超, 孙良福, 胡高兴. 基于Bi-LSTM与改进NSGAIII的混凝土配合比多目标优化[J]. 材料导报, 2025, 39(19): 24090069-8.
[4] 李曈, 王庆贺, 任庆新. 钢渣骨料/粉煤灰对ECC力学与介质传输性能的影响机理[J]. 材料导报, 2025, 39(19): 24060141-7.
[5] 文波, 田伟, 张路, 牛荻涛, 嵇智远. 玄武岩-聚丙烯纤维增强混凝土在杂散电流与硫酸盐作用下的劣化规律[J]. 材料导报, 2025, 39(18): 24040090-7.
[6] 张路, 徐智明, 文波, 牛荻涛, 李辉, 梁浩男, 嵇智远. 杂散电流作用下混杂纤维混凝土SO42-迁移与反应规律研究[J]. 材料导报, 2025, 39(18): 24060080-8.
[7] 杨玉龙, 单联飞, 庄智杰, 鲍玖文, 崔祎菲. 海洋潮汐区混凝土氯离子扩散系数相似性分析[J]. 材料导报, 2025, 39(18): 24080008-6.
[8] 侯宇颖, 李涛, 吕寅, 陈刚, 胡夏闽, 唐磊, 杨建明. 粉煤灰和钢渣粉对磷酸钾镁水泥浆体硫酸盐侵蚀行为的影响[J]. 材料导报, 2025, 39(18): 24080025-7.
[9] 武军, 丁亚红, 郭猛, 郭书奇. 再生混凝土模型界面过渡区断裂行为与数值模拟[J]. 材料导报, 2025, 39(18): 24080157-8.
[10] 马亚鹏, 翟文辉, 张东生, 朱涛, 杨秋宁, 毛明杰. 复合外加剂对3D打印砂浆流变与建造性的协同机制及孔结构研究[J]. 材料导报, 2025, 39(17): 25030044-8.
[11] 荣辉, 王亚楠, 刘志华, 王海良, 黄阔薪. 海洋环境下硅藻生物的繁殖特性及在水泥基材料表面的附着状态[J]. 材料导报, 2025, 39(17): 24060213-7.
[12] 海然, 崔力, 翟胜田, 刘俊霞, 惠存, 王超圣. 基于文献聚类分析的再生混凝土抗压强度及耐久性最新研究进展[J]. 材料导报, 2025, 39(17): 24050154-9.
[13] 张大旺, 杨欢, 李辉. 3D打印建筑底层荷载的研究进展[J]. 材料导报, 2025, 39(16): 24060021-12.
[14] 李良顺, 李化建, 杨志强, 石贺男, 董昊良. 基于粗骨料的混凝土弹性模量控制方法及预测模型[J]. 材料导报, 2025, 39(16): 24070071-15.
[15] 王鹏举, 朋羽程, 丁宏, 王伟, 朋改非. 电石渣激发的无水泥超高强砂浆力学性能与微观结构特征[J]. 材料导报, 2025, 39(16): 24070056-9.
[1] Pei HE, Weizhi YAO, Jianming LYU, Bo GAO, Xianrong LI. Radiation Resistance Design and Nanoscale Second-phase Particles Characterization for ODS Steels: a Review[J]. Materials Reports, 2018, 32(1): 34 -40 .
[2] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
[3] YANG Xiaojie, DONG Binghai, CHEN Fengxiang, WAN Li, ZHAO Li, WANG Shimin. One-dimensional TiO2 Photoanodes for Dye-sensitized Solar Cells: Fabrication and Applications[J]. Materials Reports, 2017, 31(17): 138 -145 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] ZHU Lijuan, WANG Min, GU Zhengwei, HE Lingling. Research on Stretch Bending Forming of Stainless Steel Curved Beam[J]. Materials Reports, 2017, 31(24): 179 -181 .
[6] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] FU Yu, HE Junbao, ZHANG Ping, LENG Yumin, MA Benyuan, LI Jiyan. Single Crystal Growth and Physical Properties of Layered Transitional Metal Bismuthide BaAg2-δBi2[J]. Materials Reports, 2018, 32(12): 2043 -2046 .
[9] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[10] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed