Please wait a minute...
材料导报  2025, Vol. 39 Issue (17): 24050154-9    https://doi.org/10.11896/cldb.24050154
  无机非金属及其复合材料 |
基于文献聚类分析的再生混凝土抗压强度及耐久性最新研究进展
海然1, 崔力2,*, 翟胜田2, 刘俊霞3, 惠存3, 王超圣2
1 河南科技大学材料科学与工程学院,河南 洛阳 471000
2 河南科技大学土木建筑学院,河南 洛阳 471000
3 中原工学院建筑工程学院,郑州 451191
Research Progress on Compressive Strength and Durability of Recycled Concrete Based on Literature Cluster Analysis
HAI Ran1, CUI Li2,*, ZHAI Shengtian2, LIU Junxia3, HUI Cun3, WANG Chaosheng2
1 School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471000, Henan, China
2 School of Civil Engineering and Architecture, Henan University of Science and Technology, Luoyang 471000, Henan, China
3 School of Civil Engineering, Zhongyuan University of Technology, Zhengzhou 451191, China
下载:  全 文 ( PDF ) ( 32006KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着研究手段的不断更新,再生混凝土领域的研究成果迅速累积,然而,这与当前基于滞后性理论的在役再生混凝土应用状况之间的矛盾日益加剧。基于此,本文对再生混凝土力学性能和耐久性的国内外最新研究成果进行检索,时间跨度为2019—2024年,对高频共现关键词进行聚类分析,发现再生混凝土仍然是固废处理和减少碳排放的有效手段,当前国内外研究主要聚焦在抗压强度和耐久性方面,同时,再生超高性能混凝土也逐渐成为研究热点。本文进一步总结了最新研究成果中骨料来源和取代率、矿物掺合料、界面过渡区对抗压强度的影响,梳理了冻融循环效应、碳化性、氯离子渗透性在耐久性方面的研究进展,最后,基于文献检索结果和主要研究成果,给出了再生混凝土领域未来可能的研究趋势。研究成果旨在加快再生混凝土最新研究成果到应用的转化,为实现“双碳”战略目标提供基本依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
海然
崔力
翟胜田
刘俊霞
惠存
王超圣
关键词:  再生混凝土  聚类分析  抗压强度  耐久性  研究趋势    
Abstract: With the continuous renewal of research methods, the research achievements in the field of recycled aggregate concrete have accumulated rapidly, but the contradiction between this and the current application of recycled aggregate concrete in service based on the lag theory is increasingly intensified. Based on this, this paper searches the latest research results on mechanical properties and durability of recycled aggregate concrete at home and abroad, with a time span of 2019—2024, conducts cluster analysis on high-frequency co-occurrence keywords. It is found that recycled aggregate concrete is still an effective means of solid waste treatment and carbon emission reduction, and the current studies mainly focus on compressive strength and durability, meanwhile recycled ultra-high performance concrete has gradually become a research focus. This paper further summarizes the latest research on the effects of aggregate source and replacement rate, mineral admixtures, interface transition zone on compressive strength, and the research progress of freeze-thaw cycle effect, carbonization, chloride ion permeability on durability as well. Finally, based on the literature search results and main research results, the possible future research trends in the field of recycled aggregate concrete are given. The research results aim to accelerate the transformation of the latest research results on mechanical properties of recycled aggregate concrete to its application, and provide a fundamental basis for realizing the strategic goal of “double carbon”.
Key words:  recycled aggregate concrete    cluster analysis    compressive strength    durability    research trends
发布日期:  2025-08-28
ZTFLH:  TU528  
基金资助: 河南省重点研发专项(241111322000);国家自然科学基金(52308246;52104082)
通讯作者:  *崔力,博士,河南科技大学土木建筑学院讲师。主要从事岩石、混凝土锚固力学性能的研究。9906622@haust.edu.cn   
作者简介:  海然,博士,河南科技大学材料科学与工程学院教授、博士研究生导师。主要从事高性能水泥基复合材料的研发与改性,建筑垃圾、粉煤灰等固体废弃物的资源化利用方面的研究。
引用本文:    
海然, 崔力, 翟胜田, 刘俊霞, 惠存, 王超圣. 基于文献聚类分析的再生混凝土抗压强度及耐久性最新研究进展[J]. 材料导报, 2025, 39(17): 24050154-9.
HAI Ran, CUI Li, ZHAI Shengtian, LIU Junxia, HUI Cun, WANG Chaosheng. Research Progress on Compressive Strength and Durability of Recycled Concrete Based on Literature Cluster Analysis. Materials Reports, 2025, 39(17): 24050154-9.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24050154  或          https://www.mater-rep.com/CN/Y2025/V39/I17/24050154
1 Wang B, Yan L, Fu Q, et al. Resources Conservation and Recycling, 2021, 171.
2 Mehrabi P, Shariati M, Kabirifar K, et al. Construction & Building Materials, 2021, 287, 122652.
3 Xiao J Z, Hao L C, Cao W Z, et al. Joural of Tongji University (Nature Science), 2022, 50(3), 378(in Chinese).
肖建庄, 郝潞岑, 曹万智, 等. 同济大学学报(自然科学版), 2022, 50(3), 378.
4 Ding Z K, Wang X R, Wen X P. Journal of Safety and Environment, 2024, 24(6), 2444(in Chinese).
丁志坤, 王欣睿, 文馨平. 安全与环境学报, 2024, 24(6), 2444.
5 Liu Q, Xiao J Z, Zhi X, et al. Joural of Tongji University(Nature Science), 2020, 48(10), 1417(in Chinese).
刘琼, 肖建庄, 郅晓, 等. 同济大学学报(自然科学版), 2020, 48 (10), 1417.
6 Du C W, Guan Y J, Du L H, et al. New Building Materials, 2025, 52(2), 128(in Chinese).
杜朝伟, 管玉见, 杜立辉, 等. 新型建筑材料, 2025, 52(2), 128.
7 von Greve-Dierfeld S, Lothenbach B, Vollpracht A, et al. Materials and Structures, 2020, 53(6), 136.
8 Maduabuchukwu Nwakaire C, Poh Yap S, Chuen Onn C, et al. Construction & Building Materials, 2020, 235, 117444.
9 Sousa V, Bogas J A. Journal of Cleaner Production, 2021, 306, 127277.
10 Xiao J, Xiao Y, Liu Y, et al. Structural Concrete, 2020, 22,E58.
11 Kou C J, Lu Y, Wang C, et al. China Sciencepaper, 2025, 20(3), 185(in Chinese).
寇长江, 陆禹, 王超, 等. 中国科技论文, 2025, 20(3), 185.
12 Feng W H, Li J H, Chen Y, et al. Journal of Building Materials, https://link.cnki.net/urlid/31.1764.TU.20250430.1634.016(in Chinese).
冯万辉, 黎锦豪, 陈垚, 等. 建筑材料学报, https://link.cnki.net/urlid/31.1764.TU.20250430.1634.016.
13 Liu C, Zhu C, Fan J C, et al. Journal of Building Structures, 2020, 41(12), 56(in Chinese).
刘超, 朱超, 樊金承, 等. 建筑结构学报, 2020, 41(12), 56.
14 Duan Z H, Deng Q, Xiao J Z, et al. Journal of Building Materials, 2022, 25(11), 1136(in Chinese).
段珍华, 邓琪, 肖建庄, 等. 建筑材料学报, 2022, 25(11), 1136.
15 Wang Y G, Li S P, Peter Hughes, et al. Journal of Vibration and Shock, 2021, 40(23), 269(in Chinese).
王永贵, 李帅鹏, Peter Hughes, 等. 振动与冲击, 2021, 40(23), 269.
16 Tang Y, Xiao J, Zhang H, et al. Construction and Building Materials, 2022, 323.
17 Xiao J Z, Ma X W, Liu Q, et al. Journal of Architecture and Civil Engineering, 2021, 38(2), 1(in Chinese).
肖建庄, 马旭伟, 刘琼, 等. 建筑科学与工程学报, 2021, 38(2), 1.
18 Xiao J Z, Tang Y X, Zhang H H, et al. Joural of Tongji University(Nature Science), 2023, 51(12), 1910(in Chinese).
肖建庄, 唐宇翔, 张航华, 等. 同济大学学报(自然科学版), 2023, 51(12), 1910.
19 Zhang H, Xiao J, Tang Y, et al. Cement & Concrete Composites, 2022, 130, 104527.
20 Liu G, Li Q, Song J, et al. Materials, 2021, 15(1), 257.
21 Ma K, Huang X, Shen J, et al. Journal of Building Engineering, 2021, 44, 103292.
22 Liu X, Wu J, Yan P, et al. Journal of Materials in Civil Engineering, 2021, 33(5).
23 Ge P, Huang W, Quan W L, et al. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2021, 49(5), 86(in Chinese).
葛培, 黄炜, 权文立, 等. 华中科技大学学报(自然科学版), 2021, 49(5), 86.
24 Zhu C, Zhao W T, Yu W H, et al. Acta Materiae Compositae Sinica, 2024, 41(2), 898(in Chinese).
朱超, 赵文韬, 余伟航, 等. 复合材料学报, 2024, 41(2), 898.
25 Zhenli Z, Shu Z, Wu Q, et al. Global Challenges, 2023, 7(10), 2300189.
26 Kasyap S S, Li S, Senetakis K. Construction & Building Materials, 2021, 271, 121509.
27 Zhu H G, Huo Q J, Ni Y D, et al. Materials Reports, 2021, 35(22), 220851(in Chinese).
朱红光, 霍青杰, 倪亚东, 等. 材料导报, 2021, 35(22), 220851.
28 Wu B, Wu Q L, Guo F K. Journal of Building Structures, 2023, 44(3), 247(in Chinese).
吴波, 伍茜兰, 郭富康. 建筑结构学报, 2023, 44(3), 247.
29 Ataria R B, Wang Y C. Materials, 2022, 15(5), 1776.
30 Chen A, Han X, Chen M, et al. Construction & Building Materials, 2020, 260, 119888.
31 Gong Y F, Chen P, Zhang J X, et al. Journal of the Chinese Ceramic Society, 2021, 49(10), 2305(in Chinese).
龚亦凡, 陈萍, 张京旭, 等. 硅酸盐学报, 2021, 49(10), 2305.
32 Dosho Y. Crystals (Basel), 2021, 11(6), 596.
33 Long T, Shi X S, Wang Q Y, et al. Journal of Sichuan University (Engineering Science Edition), 2013, 45(S1), 43(in Chinese).
龙涛, 石宵爽, 王清远, 等. 四川大学学报(工程科学版), 2013, 45(S1), 43.
34 Xiao J Z, Hu B, Ding T. Joural of Tongji University(Nature Science), 2015, 43(11), 1649(in Chinese).
肖建庄, 胡博, 丁陶. 同济大学学报(自然科学版), 2015, 43(11), 1649.
35 Hou Y F, Liu J T, Zhao S R, et al. Journal of Basic Science and Engineering, 2019, 27(5), 1149(in Chinese).
侯云芬, 刘锦涛, 赵思儒, 等. 应用基础与工程科学学报, 2019, 27(5), 1149.
36 Cao F, Qiao H X, Shu X Y, et al. Journal of Central South University (Science and Technology), 2023, 54(4), 1562(in Chinese).
曹锋, 乔宏霞, 舒修远, 等. 中南大学学报(自然科学版), 2023, 54(4), 1562.
37 Zhang X, Zhang H, Zhang X L, et al. Journal of Building Materials, 2019, 22(4), 626(in Chinese).
张雄, 张恒, 张晓乐, 等. 建筑材料学报, 2019, 22(4), 626.
38 Huang Y E, Gong A M, Jin Z, et al. Water Resources Planning and Design, 2025(7), 124(in Chinese).
黄逸尔, 龚爱民, 金镯, 等. 水利规划与设计, 2025(7), 124.
39 Xiao J M, Li Hui, Lei R X. Journal of Building Materials, 2024, 27(5), 381(in Chinese).
肖建敏, 李辉, 雷睿欣. 建筑材料学报, 2024, 27(5), 381.
40 Cheng Z Y, Chen G F, Tu Y P. Journal of Building Materials, 2023, 26(3), 228(in Chinese).
程子扬, 陈国夫, 屠艳平. 建筑材料学报, 2023, 26(3), 228.
41 Zhang Huan, Wang Yuyin, Wang Qinghe, et al. Construction and Building Materials, 2022, 329, 127142.
42 Tang W, Shi J Y, He Z H, et al. Acta Materiae Compositae Sinica, 2022, 39(5), 2369(in Chinese).
汤薇, 石锦炎, 何智海, 等. 复合材料学报, 2022, 39(5), 2369.
43 You F, Nian M F, Zheng J L, et al. Journal of Building Structures, 2022, 43(4), 134(in Chinese).
游帆, 念梦飞, 郑建岚, 等. 建筑结构学报, 2022, 43(4), 134.
44 Ma K L, Liu J, Shen J T, et al. Journal of Railway Science and Engineering, 2023, 20(10), 3809(in Chinese).
马昆林, 刘建, 申景涛, 等. 铁道科学与工程学报, 2023, 20(10), 3809.
45 Li X G, Wang P Q, Zhang Y, et al. Journal of Building Materials, 2022, 25(6), 572(in Chinese).
李晓光, 王攀奇, 张郁, 等. 建筑材料学报, 2022, 25(6), 572.
46 Xu F W, Tian B, Xu G. Materials Reports, 2022, 36(4), 118(in Chinese).
徐福卫, 田斌, 徐港. 材料导报, 2022, 36(4), 118.
47 Li D, Jin G, Du X L, et al. Engineering Mechanics, 2019, 36(5), 67(in Chinese).
李冬, 金浏, 杜修力, 等. 工程力学, 2019, 36(5), 67.
48 Luan H, Wu J, Pan J. Journal of Wuhan University of Technology:Materials Science Edition, 2021, 36(1), 58.
49 Wang C X, Luo F, Cao F B, et al. Journal of Building Structures, 2021, 42(6), 214(in Chinese).
王晨霞, 罗菲, 曹芙波, 等. 建筑结构学报, 2021, 42(6), 214.
50 Liu Y, Zhou J H, Wu D, et al. Journal of Building Materials, 2023, 26(9), 1031(in Chinese).
刘昱, 周静海, 吴迪, 等. 建筑材料学报, 2023, 26(9), 1031.
51 Gong L, Liang Y, Gong X L, et al. Journal of Basic Science and Engineering, 2023, 31(4), 1006(in Chinese).
贡力, 梁颖, 宫雪磊, 等. 应用基础与工程科学学报, 2023, 31(4), 1006.
52 Qin Y J, Zhang C, Xie Y, et al. Journal of Hunan University (Natural Sciences), 2022, 49(12), 122(in Chinese).
秦拥军, 张驰, 谢旖, 等. 湖南大学学报(自然科学版), 2022, 49(12), 122.
53 Xu Y, Dong J F, Wang Q Y, et al. Journal of Building Structures, 2022, 43(S1), 98(in Chinese).
徐一, 董江峰, 王清远, 等. 建筑结构学报, 2022, 43(S1), 98.
54 Wang C X, Liu L, Cao F B, et al. Journal of Building Structures, 2020, 41(12), 193(in Chinese).
王晨霞, 刘路, 曹芙波, 等. 建筑结构学报, 2020, 41(12), 193.
55 Bai W F, Niu D X, Guan J F, et al. Engineering Mechanics, 2023, 40(9), 117(in Chinese).
白卫峰, 牛东旭, 管俊峰, 等. 工程力学, 2023, 40(9), 117.
56 Zou Z, Yang G. European Journal of Environmental and Civil Engineering, 2022, 26(11), 5196.
57 Jamil S, Shi J, Idrees M. Construction & Building Materials, 2023, 382, 131339.
58 Mi R J, Pan G H. Journal of Harbin Engineering University, 2020, 41(3), 473(in Chinese).
糜人杰, 潘钢华. 哈尔滨工程大学学报, 2020, 41(3), 473.
59 Liu K H, Zheng J K, Xie W L, et al. Journal of Hunan University (Na-tural Sciences), 2023, 50(9), 88(in Chinese).
刘凯华, 郑佳凯, 谢维力, 等. 湖南大学学报(自然科学版), 2023, 50(9), 88.
60 Ding Y H, Guo S Q, Zhang X G, et al. Acta Materiae Compositae Sinica, 2022, 39(3), 1228(in Chinese).
丁亚红, 郭书奇, 张向冈, 等. 复合材料学报, 2022, 39(3), 1228.
61 Xiao J Z, Ding Q, Daun Z H, et al. Journal of Basic Science and Engineering, 2024, 32(5), 1486(in Chinese).
肖建庄, 邓琪, 段珍华, 等. 应用基础与工程科学学报, 2024, 32 (5), 1486.
62 Cao W L, Zhao Y X, Ye T P. Journal of Harbin Institute of Technology, 2019, 51(6), 1(in Chinese).
曹万林, 赵羽习, 叶涛萍. 哈尔滨工业大学学报, 2019, 51(6), 1.
63 Chinzorigt G, Lim M K, Yu M, et al. Cement and Concrete Research, 2020, 136, 106062.
64 Gao S, Guo J, Gong Y, et al. Case Studies in Construction Materials, 2022, 16, e1034.
65 Bao J W, Wang Y W, Mou X Y, et al. Acta Materiae Compositae Sinica, 2023, 40(2), 1015(in Chinese).
鲍玖文, 王云伟, 牟新宇, 等. 复合材料学报, 2023, 40(2), 1015.
66 Jiang W Q, Liu Q F. Journal of the Chinese Ceramic Society, 2020, 48(2), 258(in Chinese).
姜文镪, 刘清风. 硅酸盐学报, 2020, 48(2), 258.
67 Kang T B, Liu Y, Zhou J H, et al. Journal of Building Materials, 2022, 25(4), 389(in Chinese).
康天蓓, 刘昱, 周静海, 等. 建筑材料学报, 2022, 25(4), 389.
68 Mou X Y, Wang Y W, Lu S B, et al. Acta Materiae Compositae Sinica, 2023, 40(5), 2876(in Chinese).
牟新宇, 王云伟, 卢石宝, 等. 复合材料学报, 2023, 40(5), 2876.
69 Chen C H, Liu R G, Zhu P H, et al. Journal of Building Materials, 2021, 24(6), 1216(in Chinese).
陈春红, 刘荣桂, 朱平华, 等. 建筑材料学报, 2021, 24(6), 1216.
70 Guan B W, Wu J Y, Chen H X, et al. China Journal of Highway and Transport, 2021, 34(10), 155(in Chinese).
关博文, 吴佳育, 陈华鑫, 等. 中国公路学报, 2021, 34(10), 155.
71 Zaid O, Mukhtar F M, M-García R, et al. Case Studies in Construction Materials, 2022, 16, e939.
72 Pavl T, Fotová K, Mariaková D, et al. Structural Concrete, Journal of the FIB, 2023, 24(2), 1868.
73 Tayeh B A, Saffar D M A, Alyousef R. Journal of Materials Research and Technology, 2020, 9(4), 8469.
74 Liu C, Lin X, Liu H W, et al. Acta Materiae Compositae Sinica, 2022, 39(11), 5415(in Chinese).
刘超, 林鑫, 刘化威, 等. 复合材料学报, 2022, 39(11), 5415.
75 Chu H Y, Jiang J Y, Li H, et al. Materials Reports, 2020, 34(24), 24029(in Chinese).
褚洪岩, 蒋金洋, 李荷, 等. 材料导报, 2020, 34(24), 24029.
76 Feng T T, Jiang J Y, Liu Z Y, et al. Journal of the Chinese Ceramic Society, 2020, 48(8), 1177(in Chinese).
冯滔滔, 蒋金洋, 刘志勇, 等. 硅酸盐学报, 2020, 48(8), 1177.
77 Yang J, Peng G F, Shui G S. Acta Materiae Compositae Sinica, 2019, 36(8), 1949(in Chinese).
杨娟, 朋改非, 税国双. 复合材料学报, 2019, 36(8), 1949.
78 Zhang Z, Cai Z W, Li L Z, et al. Acta Materiae Compositae Sinica, 2022, 39(11), 5158(in Chinese).
张智, 蔡自伟, 李凌志, 等. 复合材料学报, 2022, 39(11), 5158.
79 Ge X L, Chu H Y. Journal of Building Materials, 2020, 23(4), 810(in Chinese).
葛晓丽, 褚洪岩. 建筑材料学报, 2020, 23(4), 810.
[1] 潘杜, 牛荻涛, 罗大明. 海水海砂混凝土中低合金钢筋钝化膜结构及厚度预测模型[J]. 材料导报, 2025, 39(6): 23120173-8.
[2] 钟新宇, 赖俊英, 阮少钦, 钱晓倩, 钱匡亮. 复合早强剂对掺石灰石粉砂浆强度和水化作用的影响[J]. 材料导报, 2025, 39(5): 24010244-8.
[3] 纪泳丞, 王大洋, 贾艳敏. PVA纤维增强砖骨料再生混凝土数值模拟及尺寸效应研究[J]. 材料导报, 2025, 39(3): 23100214-11.
[4] 李克亮, 颜辰, 陈希, 陈爱玖, 杜晓蒙, 李伟华. 三种微生物矿化修复再生混凝土裂缝效果对比分析[J]. 材料导报, 2025, 39(2): 23120160-8.
[5] 郭长旭, 李晓丽, 解卫东, 李大虎, 王靖丰, 赵晓泽. 电石渣-矿渣基砒砂岩复合土强度及微观机理研究[J]. 材料导报, 2025, 39(17): 24070063-8.
[6] 梁卓悦, 余波, 蔡盛源, 解威威. 基于材料成本与碳排放成本最小化的低碳混凝土配合比优化设计方法[J]. 材料导报, 2025, 39(14): 23120180-6.
[7] 王长龙, 付兴帅, 杨彩霞, 张凯帆, 白云翼, 路璐, 高占须, 郑永超, 刘治兵, 翟玉新, 刘枫. 钒钛铁尾矿制备矿山修复混凝土及性能研究[J]. 材料导报, 2025, 39(14): 24050044-6.
[8] 麻春英, 高俊, 沈明学. 超疏水表面机械稳定性研究现状及发展趋势[J]. 材料导报, 2025, 39(14): 24090242-11.
[9] 管焓宇, 张登宇, 欧阳金平, 张伟强, 刘志勇. 高性能水性环氧涂层及涂层钢筋应用研究进展[J]. 材料导报, 2025, 39(13): 24080081-10.
[10] 许开成, 王文鹏, 张立卿. 不同来源粗骨料混合再生混凝土抗压强度及其预测模型建立[J]. 材料导报, 2025, 39(12): 23110068-9.
[11] 张彩利, 王怀毅, 王犇, 于焱龙, 张崇僖. 大掺量钢渣微粉-水泥泡沫轻质土的孔结构表征及其对力学性能的影响[J]. 材料导报, 2025, 39(1): 23100044-9.
[12] 周宏元, 母崇元, 王小娟, 李润琳, 曹万林. 地聚物再生混凝土抗压强度的离散性分析[J]. 材料导报, 2025, 39(1): 23100132-8.
[13] 孙海宽, 甘德清, 薛振林, 刘志义, 张雅洁. 碱渣改性充填体早期力学特性及能量演化特征[J]. 材料导报, 2024, 38(9): 22070248-7.
[14] 何俊, 罗时茹, 龙思昊, 朱元军. 不同吸水环境下碱渣固化淤泥毛细吸水和强度性质[J]. 材料导报, 2024, 38(9): 22100254-6.
[15] 魏令港, 黄靓, 曾令宏. 基于改进特征筛选的随机森林算法对锂渣混凝土强度的预测研究[J]. 材料导报, 2024, 38(9): 22050319-6.
[1] Pei HE, Weizhi YAO, Jianming LYU, Bo GAO, Xianrong LI. Radiation Resistance Design and Nanoscale Second-phase Particles Characterization for ODS Steels: a Review[J]. Materials Reports, 2018, 32(1): 34 -40 .
[2] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
[3] YANG Xiaojie, DONG Binghai, CHEN Fengxiang, WAN Li, ZHAO Li, WANG Shimin. One-dimensional TiO2 Photoanodes for Dye-sensitized Solar Cells: Fabrication and Applications[J]. Materials Reports, 2017, 31(17): 138 -145 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] ZHU Lijuan, WANG Min, GU Zhengwei, HE Lingling. Research on Stretch Bending Forming of Stainless Steel Curved Beam[J]. Materials Reports, 2017, 31(24): 179 -181 .
[6] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] FU Yu, HE Junbao, ZHANG Ping, LENG Yumin, MA Benyuan, LI Jiyan. Single Crystal Growth and Physical Properties of Layered Transitional Metal Bismuthide BaAg2-δBi2[J]. Materials Reports, 2018, 32(12): 2043 -2046 .
[9] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[10] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed