Please wait a minute...
材料导报  2025, Vol. 39 Issue (17): 24050186-6    https://doi.org/10.11896/cldb.24050186
  无机非金属及其复合材料 |
Mo2C修饰ZnCdS材料的制备及光催化产氢性能研究
樊明昂1, 谢潇琪1,4,*, 冯丽1,2,3, 杜红莉1,2,3, 刘超1,2,3,*
1 河北地质大学宝石与材料学院,石家庄 050031
2 河北省岩石矿物材料绿色开发重点实验室,石家庄 050031
3 硅酸盐固废资源化利用河北省工程研究中心,石家庄 050031
4 中国林业科学研究院林产化学工业研究所,南京 210042
Preparation and Photocatalytic Hydrogen Production Performance of Mo2C-modified ZnCdS Materials
FAN Ming'ang1, XIE Xiaoqi1,4 ,*, FENG Li1,2,3, DU Hongli1,2,3, LIU Chao1,2,3,*
1 School of Gemmology and Material Science, Hebei GEO University, Shijiazhuang 050031, China
2 Hebei Key Laboratory of Green Development of Rock Mineral Materials, Shijiazhuang 050031, China
3 Engineering Research Center for Silicate Solid Waste Resource Utilization of Hebei Province, Shijiazhuang 050031, China
4 Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
下载:  全 文 ( PDF ) ( 11915KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过原位沉积法合成了Mo2C修饰的ZnCdS光催化材料,对其结构、组成和性能进行了表征,并进行了光催化产氢性能测试。结果表明,ZnCdS在Mo2C颗粒表面原位生成并与之形成Schottky界面。Mo2C/ZnCdS产氢速率为5.26 mmol·g-1·h-1,是纯ZnCdS的4.35倍。Mo2C/ZnCdS可能的光催化机理为:作为助催化剂的Mo2C具有d带电子结构,表现出典型的类金属特性和高的表面功函,在Mo2C和ZnCdS界面处形成指向Mo2C的内建电场;内建电场能够加速电子由ZnCdS向Mo2C的定向转移,并在Mo2C表面富集,从而提高光生电荷分离效率;同时,Mo2C因表面析氢过电位较低而成为光催化H+还原反应的活性中心,可进一步加快光催化产氢。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
樊明昂
谢潇琪
冯丽
杜红莉
刘超
关键词:  Mo2C  助催化剂  ZnCdS  原位复合  光催化产氢    
Abstract: The present work made a successful attempt at synthesizing a Mo2C-modified ZnCdS composite photocatalytic material an in-situ deposition method. It carried out composition, structure, and property characterization, as well as photocatalytic hydrogen production test on the synthesized composite catalyst. The Mo2C/ZnCdS was found to grow in situ on the surface of Mo2C particles and formed a Schottky junction, and to exhibit a hydrogen production rate of 5.26 mmol·g-1·h-1, approximately 335% higher than that of ZnCdS. This work also gave a hypothesized photocatalysis mechanism of the Mo2C/ZnCdS for hydrogen evolution:(ⅰ) Mo2C, as a cocatalyst, had metal-like properties and high surface work function, which facilitated the formation of the internal electric field from ZnCdS to Mo2C at their interface;(ⅱ) this internal electric field accelerated the transfer rate of electrons and the electrons enriched on the surface of Mo2C, thus greatly increasing the photogenerated charge separation efficiency;(ⅲ) Mo2C acted as the active site of photocatalytic reaction (owing to its low hydrogen evolution overpotential), and further promotes the photocatalytic hydrogen production efficiency.
Key words:  Mo2C    co-catalyst    ZnCdS    in-situ synthesis    photocatalytic hydrogen evolution reaction
发布日期:  2025-08-28
ZTFLH:  O644.1  
  O643.36  
基金资助: 河北省自然科学基金(B2020208009);河北省高等学校科学技术研究重点项目(ZD2017012);河北地质大学学生科研项目(KAY202414);河北省省级研究生示范课程(KCJSX2024097);河北地质大学研究生课程建设项目(YKCX2025005)
通讯作者:  *谢潇琪,硕士,中国林业科学研究院林产化学工业研究所研究实习员。目前主要从事光催化材料、木本油脂基润滑油添加剂、环氧固化剂等方面的研究工作。xiexiaoqi@163.com
刘超,博士,河北地质大学宝石与材料学院教授、硕士研究生导师。目前主要从事环境矿物材料、光催化材料等方面的研究工作。yikeschao@126.com   
作者简介:  樊明昂,于2023年9月考入河北地质大学,攻读材料科学与工程硕士学位,在刘超教授的指导下进行研究。研究方向为光催化材料的合成及性能。
引用本文:    
樊明昂, 谢潇琪, 冯丽, 杜红莉, 刘超. Mo2C修饰ZnCdS材料的制备及光催化产氢性能研究[J]. 材料导报, 2025, 39(17): 24050186-6.
FAN Ming'ang, XIE Xiaoqi, FENG Li, DU Hongli, LIU Chao. Preparation and Photocatalytic Hydrogen Production Performance of Mo2C-modified ZnCdS Materials. Materials Reports, 2025, 39(17): 24050186-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24050186  或          https://www.mater-rep.com/CN/Y2025/V39/I17/24050186
1 Liu Y, Yang B, He H. et al. Science of the Total Environment, 2022, 804, 150215.
2 Fujishima A, Honda K. Nature, 1972, 238, 37.
3 Wang W, Xue J, Liu J. Journal of Materials Chemistry A, 2024, 12(18), 10659.
4 Peng Y, Kang S, Hu Z. ACS Applied Nano Materials, 2020, 3(9), 8632.
5 Feng W, Lei Y, Wu X, et al. Journal of Materials Chemistry A, 2021, 9(3), 1759.
6 Hu C, Li X, Dong C, et al. Materials Chemistry Frontiers, 2023, 7(21), 5333.
7 Sharma P, Kumar A, Dhiman P, et al. Journal of Industrial and Engineering Chemistry, 2024, 132, 1.
8 Sharma P, Kumar A, Zheng G, et al. Materials Today Communication, 2023, 36, 106741.
9 Mandal S, Adhikari S, Pu S, et al. Applied Surface Science, 2019, 498, 143840.
10 He W, Deng C, Ding J, et al. Materials Reports, 2021, 35(24), 24052 (in Chinese).
贺文志, 邓承继, 丁军, 等. 材料导报, 2021, 35(24), 24052
11 Wang Y, Mino L, Pellegrino F, et al. Applied Catalysis B, 2022, 318, 121783.
12 Jin S, Jing H, Wang L, et al. ACS Applied Nano Materials, 2023, 6, 11, 9746.
13 Shen Y, Shi Y, Chen Z, et al. Chemical Engineering Journal, 2024, 484, 149607.
14 Ma X, Ren C, Li H, et al. Journal of Colloid and Interface Science, 2021, 582, 488.
15 Jin S, Jing H, Wang L, et al. Journal of Advanced Ceramics, 2022, 11(9), 1431.
16 Liu C, Xie X Q, Fan P K, et al. Journal of Fuel Chemistry and Technology, 2022, 50(8), 1075 (in Chinese).
刘超, 谢潇琪, 范鹏凯, 等. 燃料化学学报, 2022, 50(8), 1075.
17 Han J, Liu K, Chang R, et al. Angewandte Chemie, 2019, 131(7), 2022.
18 Li Q, Li X, Wageh S, et al. Advanced Energy Materials, 2015, 5(14), 150.
19 Ning X, Lu G. Nanoscale, 2020, 12(3), 1213.
20 Li Q, Meng H, Zhou P, et al. ACS Catalysis, 2013, 3(5), 882.
21 Ha1 E, Ruan S, Li D, et al. Nano Research, 2022, 15(2), 996.
22 Pei L, Liu J, Xu Y, et al. Journal of Alloys and Compounds, 2019, 809, 151869.
23 Chen J, Chen J, Li Y. Journal of Materials Chemistry A, 2017, 5(46), 24116.
24 Sharma L, Khushwaha H, Mathur A, et al. Journal of Solid State Che-mistry, 2018, 265, 208.
25 Bi L, Xu D, Zhang L, et al. Physical Chemistry Chemical Physics, 2015, 17(44), 29899.
26 Luo Z, Wang D, Zhang J, et al. Angewandte Chemie International Edition, 2017, 56, 12878.
27 Zeng D, Zhou T, Ong W, et al. ACS Applied Material Interfaces, 2019, 11, 5651.
[1] 李成晗, 朱旭东, 李依萍, 燕红. 利用木质素碳量子点提升UIO-66-NH2材料光催化水解产氢效率研究[J]. 材料导报, 2025, 39(15): 24060189-8.
[2] 向寒宾, 苟浇浇, 吴琳, 曾春梅. 1D/2D Co2P/g-C3N4的制备及可见光下光催化分解水析氢性能[J]. 材料导报, 2022, 36(6): 21030152-6.
[3] 刘鑫, 黄亮, 竺清, 李孝建, 郭俊艳, 张海军. 钯催化乙炔半加氢反应的研究进展[J]. 材料导报, 2022, 36(20): 20090171-9.
[4] 林佩俭, 苗鹤, 王洲航, 陈斌, 武旭扬, 袁金良. 固体氧化物燃料电池(SOFC)钛基钙钛矿阳极的研究进展[J]. 材料导报, 2020, 34(5): 5032-5038.
[5] 郦雪, 张燕, 张玉琰, 宋凤娟, 赵晓涵, Akanyange Stephen Nyabire, 曹晓强, 吕宪俊. [BMIM]PF6离子液体中GO/CuO/CeO2催化剂的制备及可见光活性[J]. 材料导报, 2020, 34(18): 18019-18024.
[6] 李旭力, 王晓静, 赵君, 李玉佩, 李发堂, 陈学敏. 催化分解水制氢体系助催化剂研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1057-1064.
[7] 何钦生, 邹兴政, 李方, 唐锐, 赵安中, 田世龙. Cu-Ag合金原位纤维复合材料研究现状[J]. 材料导报, 2018, 32(15): 2684-2692.
[1] Pei HE, Weizhi YAO, Jianming LYU, Bo GAO, Xianrong LI. Radiation Resistance Design and Nanoscale Second-phase Particles Characterization for ODS Steels: a Review[J]. Materials Reports, 2018, 32(1): 34 -40 .
[2] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
[3] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[4] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[5] FU Yu, HE Junbao, ZHANG Ping, LENG Yumin, MA Benyuan, LI Jiyan. Single Crystal Growth and Physical Properties of Layered Transitional Metal Bismuthide BaAg2-δBi2[J]. Materials Reports, 2018, 32(12): 2043 -2046 .
[6] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[7] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[8] ZHAO Xueni, YANG Jianjun, HE Fuzhen, ZHANG Li, WANG Yao, ZHANG Weigang, LIU Qingyao. Surface Treatment and Molten Salt Electroplating Al Coating on Carbon Fiber[J]. Materials Reports, 2019, 33(4): 674 -677 .
[9] GUO Ce’an, ZHAO Zongke, ZHAO Shuang, LU Fengsheng, ZHAO Boyuan, ZHANG Jian1. High-speed Friction and Wear Performance of Electrospark Deposited AlCoCrFeNi High-entropy Alloy Coating[J]. Materials Reports, 2019, 33(9): 1462 -1465 .
[10] WANG Yunpeng, HU Jiawei, XU Xiaoyun, LIU Daofeng, JIANG Hongzhang, WANG Xiaoyong, YAN Yinbiao. Research Progress of Effect of Multi-directional Forging on Microstructure and Properties of Aluminum Alloys[J]. Materials Reports, 2019, 33(13): 2266 -2271 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed