Please wait a minute...
材料导报  2025, Vol. 39 Issue (17): 24050247-17    https://doi.org/10.11896/cldb.24050247
  金属与金属基复合材料 |
金属单原子锚定g-C3N4光催化剂降解水体有机污染物的研究进展
路浩源, 穆锐, 仙光, 蒋昊洋, 刘杰*
中国人民解放军陆军勤务学院军事设施系,重庆 400000
Research Progress on the Use of Metallic Single Atoms/g-C3N4 in Degradation of Organic Pollutants in Water
LU Haoyuan, MU Rui, XIAN Guang, JIANG Haoyang, LIU Jie*
Department of Military Facilities, Army Logistics Academy, Chongqing 400000, China
下载:  全 文 ( PDF ) ( 71088KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 新型单原子光催化剂因具有较强的光催化活性、选择性、原子利用率而在光催化领域备受关注,但表面自由能高、结构不稳定等缺陷导致其实际应用时受到诸多限制。随着光催化剂制备技术的快速发展,将金属单原子锚定到石墨氮化碳(g-C3N4)上制备的光催化剂被发现同时具有成本低、导电性好、制备简便、结构稳定、吸附性能好、电子-空穴分离转移效率高等诸多优点,可有效解决前述问题,目前已在制氢、二氧化碳还原、氢化反应中得到广泛应用,但在高效降解水体各类有机污染物方面的研究相对有限。鉴于此,本文聚焦金属单原子/g-C3N4,详细介绍了单原子(主要为金属原子)/g-C3N4的合成方法,分析和讨论了不同类型单原子与g-C3N4之间的作用机理,综述了其在光催化降解抗生素、染料和酚类物质等领域的应用进展,对应用中遇到的问题进行了详细讨论并给出了相应建议。此外,展望了未来金属单原子/g-C3N4催化剂的研发、生产及水污染修复应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
路浩源
穆锐
仙光
蒋昊洋
刘杰
关键词:  单原子  石墨氮化碳  合成  光催化机理  有机污染物  降解    
Abstract: Novel metallic single-atom photocatalysts have attracted much attention in the photocatalytic field due to their strong photocatalytic activity, selectivity, and atom utilization. However, its defects such as high surface free energy and unstable structure lead to many limitations in the practical application of photocatalysis. With the rapid research and development of photocatalyst preparation technology, it has been found that the photocatalysts prepared by anchoring metallic single atoms to graphitic carbon nitride (g-C3N4) exhibit simultaneously multiple advantages, such as low cost, good electrical conductivity, easy preparation, structural stability, good adsorption performance, and high efficiency of electron/hole separation and transfer, which can effectively solve the aforementioned problems. At present, this type of catalyst has found widely application in hydrogen production, carbon dioxide reduction, and hydrogenation reactions, but research on efficient degradation of various organic pollutants in water is relatively limited. In view of this, this paper takes metallic single atoms/g-C3N4 as the research object, describes the synthesis method of single atoms (mainly metal atoms)/g-C3N4 in detail, analyzes and discusses the action mechanism between different types of single atoms and g-C3N4, and reviews its progress of its application in the fields of photocatalytic degradation of antibiotics, dyes and phenol, and also provides detailed discussion and suggestions on the problems encountered in the practical application in this field. The progress of its application in the fields of photocatalytic degradation of antibiotics, dyes and phenolics is summarized, and the problems encountered in the practical application in this field are discussed in detail and the relevant suggestions are given.
Key words:  single-atom    graphitic carbon nitride    synthesis    photocatalytic mechanism    organic pollutant    degradation
发布日期:  2025-08-28
ZTFLH:  X38  
  X52  
基金资助: 陆军勤务学院青年自主创新基金项目(LQ-QN-202317);重庆市教委科学技术研究项目(KJQN202212902;KJQN202312907;KJZD-M201912902);装备综合研究项目(LJ20232B030124)
通讯作者:  *刘杰,博士,教授,硕士研究生导师。目前主要从事环境功能材料开发及应用等方面的研究。liujiely@hotmail.com   
作者简介:  路浩源,2016年6月、2020年6月分别于山西农业大学和西北农林科技大学获得理学学士学位和硕士学位。现为中国人民解放军陆军勤务学院助教,在刘杰教授的指导下进行研究,主要研究领域为水污染修复。
引用本文:    
路浩源, 穆锐, 仙光, 蒋昊洋, 刘杰. 金属单原子锚定g-C3N4光催化剂降解水体有机污染物的研究进展[J]. 材料导报, 2025, 39(17): 24050247-17.
LU Haoyuan, MU Rui, XIAN Guang, JIANG Haoyang, LIU Jie. Research Progress on the Use of Metallic Single Atoms/g-C3N4 in Degradation of Organic Pollutants in Water. Materials Reports, 2025, 39(17): 24050247-17.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24050247  或          https://www.mater-rep.com/CN/Y2025/V39/I17/24050247
1 Chen F, Ma T, Zhang T, et al. Advanced Materials, 2021, 33(10), 2005256.
2 Chen J, Wu X J, Yin L, et al. Angewandte Chemie International Edition, 2015, 54(4), 1210.
3 Zhang Q, Guan J. Solar RRL, 2020, 4(9), 2000283.
4 Qiao B, Wang A, Yang X, et al. Nature Chemistry, 2011, 3(8), 634.
5 Haroon H, Xiang Q. Small, 2024, 20(37), 2401389.
6 Fu J, Wang S, Wang Z, et al. Frontiers of Physics, 2020, 15(3), 1.
7 Zhou X, Yang W, Chen Q, et al. Journal of Physical Chemistry C, 2016, 120(3), 1709.
8 Qiao B, Liang J X, Wang A, et al. Nano Research, 2015, 8(9), 2913.
9 Liang J X, Yang X F, Wang A, et al. Catalysis Science & Technology, 2016, 6(18), 6886.
10 Zeng Y, Almatrafi E, Xia W, et al. Coordination Chemistry Reviews, 2023, 475, 214874.
11 Zhang, Tang X, Hong Y, et al. Eco-Environment & Health (Online), 2023, 2(2), 47.
12 Zhang H, Liu W, Cao D, et al. iScience, 2022, 25(6), 1.
13 Zuo Q, Liu T, Chen C, et al. Angewandte Chemie International Edition, 2019, 58(30), 10198.
14 Li J, Huang H, Liu P, et al. Journal of Catalysis, 2019, 375, 351.
15 Zuo Q, Cui R, Wang L, et al. Science China Chemistry, 2023, 66(2), 570.
16 Jia Y T, Zhou A W, Zhao C, et al. Journal of Beijing University of Technology, 2024, 50(2), 216 (in Chinese).
贾宇桐, 周阿武, 赵琛, 等. 北京工业大学学报, 2024, 50(2), 216.
17 Yang X, Liu Y, Ta H Q, et al. npj 2D Materials and Applications, 2021, 5(1), 91.
18 Yan P, Shu S, Shi X, et al. Chinese Chemical Letters, 2022, 33(11), 4822.
19 Qi J, Xu Q, Sun J, et al. Progress in Chemistry, 2020, 32(5), 505.
20 Lang R, Du X R, Huang Y K, et al. Chemical Reviews, 2020, 120(21), 11986.
21 Huang G F, Cheng J, Wang N, et al. Acta Materiae Compositae Sinica, 2023, 40(9), 4985 (in Chinese).
黄国芳, 程佳, 王娜, 等. 复合材料学报, 2023, 40(9), 4985.
22 Tibbetts I, Kostakis G E. Molecules, 2020, 25(6), 1291.
23 Ren S, Yu Q, Yu X, et al. Science China Materials, 2020, 63(6), 903.
24 Pan C, El-khodary S, Wang S, et al. Fuel Processing Technology, 2023, 250, 107879.
25 Yang G S, Li X C, Zhang P, et al. Modern Chemical Research, 2024, (9), 11 (in Chinese).
杨广森, 李晓辰, 张鹏, 等. 当代化工研究, 2024, (9), 11.
26 Liu X J, Chen M Y, Ma J J, et al. China Powder Science and Technology, 2024(5), 35 (in Chinese).
刘熙俊, 陈明英, 马俊杰, 等. 中国粉体技术, 2024(5), 35.
27 Mazzanti S, Savateev A. ChemPlusChem, 2020, 85(11), 2499.
28 Darkwah W K, Ao Y. Nanoscale Research Letters, 2018, 13, 383.
29 Ou M, Wan S, Zhong Q, et al. International Journal of Hydrogen Energy, 2017, 42(44), 27043.
30 Zeng Z, Su Y, Quan X, et al. Nano Energy, 2020, 69(32), 505.
31 Gao C, Low J, Long R, et al. Chemical Reviews, 2020, 120(21), 12175.
32 Oh Y, Hwang J O, Lee E S, et al. ACS Applied Materials & Interfaces, 2016, 8(38), 25438.
33 Cheng N, Zhang L, Doyle-Davis K, et al. Electrochemical Energy Reviews, 2019, 2(4), 539.
34 Cao Y J, Chen S, Luo Q Q, et al. Angewandte Chemie International Edition, 2017, 56(40), 12191.
35 Zeng L, Dai C, Liu B, et al. Journal of Materials Chemistry A, 2019, 7(42), 24217.
36 Hu L, Wang T, Nie Q, et al. Carbon, 2022, 200, 187.
37 Wang J, Song Y, Zuo C, et al. Journal of Colloid and Interface Science, 2022, 625, 722.
38 Zhou Y, Yu M, Zhang Q, et al. Journal of Hazardous Materials, 2022, 440, 129724.
39 Liu P, Huang Z, Gao X, et al. Advanced Materials, 2022, 34(16), 2200057.
40 Zhao Z, Zhang W, Liu W, et al. Chemical Engineering Journal, 2021, 407, 127167.
41 Capobianco M D, Pattengale B, Neu J, et al. The Journal of Physical Chemistry Letters, 2020, 11(20), 8873.
42 Jia T, Meng D, Duan R, et al. Angewandte Chemie International Edition, 2023, 62(9), e202216511.
43 Wang Z, Zhang Y, Yu Y, et al. Applied Surface Science, 2022, 593, 153458.
44 Liu F, Qi X J, Li Y W, et al. Acta Petrolei Sinica (Petroleum Proces-sing), 2020, 36(2), 428 (in Chinese).
刘芳, 齐学进, 李雨薇, 等. 石油学报(石油加工), 2020, 36(2), 428.
45 Li L, Yu Y, Lin S, et al. Catalysis Communications, 2021, 153, 106294.
46 Chen X, Zhang J, Fu X, et al. Journal of the American Chemical Society, 2009, 131(33), 11658.
47 Wang, Zhao X, Cao D, et al. Applied Catalysis B, 2017, 211, 79.
48 Cheng X, Wang J, Zhao K, et al. Applied Catalysis B, 2022, 316, 121643.
49 Wang F, Wang Y, Feng Y, et al. Applied Catalysis B, 2018, 221, 510.
50 Yang S, Wang K, Chen Q, et al. Journal of Materials Science & Technology, 2024, 175, 104.
51 Yang M, Mei J, Ren Y, et al. Journal of Energy Chemistry, 2023, 81, 502.
52 Jin X, Wang R, Zhang L, et al. Angewandte Chemie International Edition, 2020, 59(17), 6827.
53 Huang X, Xia Y, Cao Y, et al. Nano Research, 2017, 10(4), 1302.
54 Wang K L, Li Y, Sun T, et al. Applied Surface Science, 2019, 476, 741.
55 Lopez-Munoz M J, Aguado J, Ruperez B, et al. Research on Chemical Intermediates, 2007, 33(3-5), 377.
56 Ahmed S, Rasul M G, Martens W N, et al. Desalination, 2010, 261(1-2), 3.
57 Saeed M, Muneer M, Haq A U, et al. Environmental Science and Pollution Research, 2022, 29(1), 293.
58 Guo R T, Wang J, Bi Z, et al. Chemosphere, 2022, 295, 133834.
59 Li C F, Pan W G, Zhang Z R, et al. Small, 2023, 19(22), 2300460.
60 Dhiman P, Goyal D, Rana G, et al. Journal of Nanostructure in Chemistry, 2024, 14(1), 21.
61 Jin Q, Liu W, Dong Y, et al. Journal of Cleaner Production, 2023, 423, 138688.
62 Sun L, Feng Y, Ma K, et al. Applied Catalysis B, 2022, 306, 121106.
63 Yang W J, Ren J N, Li J J, et al. Journal of Hazardous Materials, 2022, 421, 126639.
64 Xin J Y, Li F, Li Z, et al. Inorganic Chemistry Frontiers, 2022, 9(2), 302.
65 Luo T, Hu X, She Z, et al. Journal of Molecular Liquids, 2021, 324, 114772.
66 Liu B, Qiao M, Wang Y, et al. Chemosphere, 2017, 189, 115.
67 Zhao G, Li W, Zhang H, et al. Chemical Engineering Journal, 2022, 430, 132937.
68 Peng X M, Wu J Q, Zhao Z L, et al. Chemical Engineering Journal, 2022, 427, 130803.
69 Zhao C, Liu B, Zhu T, et al. Journal of Hazardous Materials, 2023, 460, 132506.
70 Liu X, Huang D, Lai C, et al. Journal of Colloid and Interface Science, 2023, 629, 417.
71 Qian M Y, Wu X L, Lu M C, et al. Advanced Functional Material, 2023, 33(12), 2208688.
72 Liu J, He H, Shen Z, et al. Journal of Hazardous Materials, 2022, 429, 128398.
73 Zhang Y Z, Liang C, Feng H P, et al. Chemical Engineering Journal, 2022, 446, 137379.
74 Wang Z, Gong Y, Zhang M, et al. Applied Surface Science, 2023, 638, 157908.
75 Luo J M, Han H A, Wang X L, et al. Applied Catalysis B, 2023, 328, 122495.
76 Wu X, Wang X, Wang F, et al. Applied Catalysis B, 2019, 247, 70.
77 Zhang C, Qin D, Zhou Y, et al. Applied Catalysis B, 2022, 303, 120904.
78 Zhang L L, Liao J J, Li Y K, et al. Chinese Chemical Letters, 2024, 35(2), 108568.
79 Zhao Z, Zhang W, Liu W, et al. Science of the Total Environment, 2020, 742, 140642.
80 Lu H, Li X, Li F, et al. Journal of Molecular Liquids, 2022, 352, 118655.
81 Xu J, Chen Y, Chen M, et al. Chemical Engineering Journal, 2022, 442, 136208.
82 Zhan R N, Zhou Y F, Liu C, et al. Separation and Purification Technology, 2022, 286, 120442.
83 Li J, Zou Y X, Li Z F, et al. ACS Applied Materials & Interfaces, 2022, 14(33), 37865.
84 An S, Zhang G, Liu J, et al. Chinese Journal of Catalysis, 2020, 41(8), 1198.
85 Zhu C, Nie Y, Cun F, et al. Applied Catalysis B, 2022, 319, 121900.
86 Choi C H, Lin L, Gim S, et al. ACS Catalysis, 2018, 8(5), 4241.
87 Zhou C, Liang Y, Xia W, et al. Journal of Hazardous Materials, 2023, 441, 129871.
88 Zhao X, Li X, Zhu Z, et al. Applied Catalysis B, 2022, 300, 120759.
89 Yu H H, Xiao H F, Yu Z L, et al. Materials Research Bulletin, 2024, 174, 112553.
90 Li H, Han X, Li J, et al. Materials Letters, 2022, 328, 133045.
91 Wang Y, Yan F, Wu J, et al. Colloids and Surfaces A, 2024, 680, 132708.
92 Niaz Z, Tariq S R, Chotana G A. RSC Advances, 2023, 13(50), 35537.
93 Zhou J W, Duo F F, Jia C Y, et al. Environmental Engineering Science, 2021, 38(11), 1098.
94 Ling Y, Liao G Z, Xu P, et al. Separation and Purification Technology, 2019, 216, 1.
95 Lian Z C, Gao F F, Xiao H, et al. Angewandte Chemie International Edition, 2024, 63(8), e202318927.
96 Chen L, Xing K, Shentu Q, et al. Chemosphere, 2021, 280, 130911.
97 Duan P, Pan J, Du W, et al. Applied Catalysis B, 2021, 299, 120714.
98 Liu H, Fu Y X, Chen S X, et al. Chemical Engineering Journal, 2023, 474, 145571.
99 Zhang X W, Li C Q, Wang X L, et al. Small, 2022, 18(52), 2204793.
[1] 董沛, 刘宇欣, 张鹏, 盛扬, 孙一新, MarkBradley, 张嵘. 可生物降解壳聚糖半互穿网络水凝胶的制备及胃滞留应用[J]. 材料导报, 2025, 39(8): 24040064-9.
[2] 苏友义, 张明, 陶雯艳, 杨萍萍, 郭星辰, 邓徐, 谢佳乐. 硝酸盐催化还原合成氨研究进展[J]. 材料导报, 2025, 39(7): 24040024-12.
[3] 李艺, 刘敬肖, 史非, 杨大毅, 田紫薇, 王美玉, 万佳翔, 陈超凡, 吕振杰. 基于草酸热还原制备CsxWO3用于高效近红外屏蔽薄膜研究[J]. 材料导报, 2025, 39(7): 23060135-8.
[4] 谢志翔, 彭溢源, 刘汉语, 朱嗣承, 陈婷. 离子液体辅助水热法制备BiVO4黄色色料及色度研究[J]. 材料导报, 2025, 39(7): 24010243-5.
[5] 李翠利, 申纯宇, 杨英, 王兴龙, 汤建伟, 化全县, 刘咏, 刘鹏飞, 丁俊祥, 申博, 王保明. 离子液体在纳米材料制备中的应用进展[J]. 材料导报, 2025, 39(7): 24020066-9.
[6] 马润山, 王海燕, 张琦, 杨建新, 汤彬, 李睿, 李双寿, 林万明, 范晋平. MXene对锌-空气电池双金属催化剂催化性能的影响[J]. 材料导报, 2025, 39(2): 24020010-8.
[7] 张悦, 吴秫芃, 崔锡文, 张煜, 蒋莉, 袁妍. 紫外光固化抗菌涂料的研究进展[J]. 材料导报, 2025, 39(15): 24020034-14.
[8] 王成海, 韩昌报, 崔雅楠, 严辉, 蒋荃. 高孔隙率水化硅酸钙的合成及对水泥基复合材料保温隔热性能的影响[J]. 材料导报, 2025, 39(13): 24060010-7.
[9] 杨锦, 罗亚娟, 李连燚, 姜宇洋, 姜桂英, 刘世亮. 海藻酸钠复合凝胶微球的制备及环境应用研究进展[J]. 材料导报, 2025, 39(12): 24030061-15.
[10] 张园, 曹子萱, 虞将苗, 于华洋, 邹桂莲. 聚合物改性沥青老化机理研究综述[J]. 材料导报, 2025, 39(10): 24030218-12.
[11] 李明新, 魏智磊, 张彪, 赵蕾, 史忠旗. 超细等轴状AlN粉体的燃烧合成制备及机理研究[J]. 材料导报, 2025, 39(1): 23120118-5.
[12] 苗青山, 杨璟, 张铁成, 李文鹏, 陕绍云, 苏红莹. 磁性多壁碳纳米管的制备及用于类芬顿反应催化降解橙黄Ⅱ[J]. 材料导报, 2024, 38(9): 22120166-7.
[13] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[14] 路宇, 周斌, 韩冰, 赵国祥, 陈学锋, 王根水. 合成工艺对固相法制备高四方性纯钛酸钡粉体的影响[J]. 材料导报, 2024, 38(7): 22080107-4.
[15] 张鹏, 陈星月, 李素芹, 任志峰, 李怡宏, 赵爱春, 何奕波. 粉煤灰制备沸石的技术及应用现状[J]. 材料导报, 2024, 38(7): 22100063-14.
[1] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[2] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[3] JIA Zhihong, WENG Yaoyao, DING Lipeng, CHENG Tao, LIU Yingying, LIU Qing. Sn Microalloying for Aluminum Alloys: Strengthening Effects and Mechanisms[J]. Materials Reports, 2017, 31(9): 123 -127 .
[4] WANG Ru, ZHANG Shaokang, WANG Gaoyong. Influence and Mechanism of Mineral Admixtures on Setting and Hardening of Styrene-Butadiene Copolymer/Cement Composite Cementitious Material[J]. Materials Reports, 2017, 31(24): 69 -73 .
[5] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[6] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[7] LIU Guoyi, LIU Yuanjun, ZHAO Xiaoming. A Study on Protecting Efficiency to the Radiative Heat of the Outer Fabric for the Fire Proximity Suits[J]. Materials Reports, 2017, 31(22): 116 -120 .
[8] ZHANG Wangxi, WANG Yanzhi, LIANG Baoyan, LI Qiquan, LUO Wei, SUN Changhong, CHENG Xiaozhe, SUN Yuzhou. Review on the Development of Nanodiamonds Used as Functional Materials[J]. Materials Reports, 2018, 32(13): 2183 -2188 .
[9] YANG Fang, ZHANG Long, YU Kun, QI Tianjiao, GUAN Debin. Recent Advances in Humidity Sensitivity of Graphene[J]. Materials Reports, 2018, 32(17): 2940 -2948 .
[10] TIAN Yaqiang, LI Wang, ZHENG Xiaoping, WEI Yingli, SONG Jinying, CHEN Liansheng. Application of Alloy Elements in Quenching and Partitioning Steel:an Overview[J]. Materials Reports, 2019, 33(7): 1109 -1118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed