Please wait a minute...
材料导报  2025, Vol. 39 Issue (13): 24060010-7    https://doi.org/10.11896/cldb.24060010
  无机非金属及其复合材料 |
高孔隙率水化硅酸钙的合成及对水泥基复合材料保温隔热性能的影响
王成海1,2, 韩昌报1,*, 崔雅楠2, 严辉1, 蒋荃3
1 北京工业大学材料科学与工程学院,北京 100124
2 廊谷(北京)新材料科技有限公司,北京 102600
3 中国国检测试控股集团股份有限公司,北京 100024
Synthesis of Calcium Silicate Hydrate with High Porosity and Its Effect on Thermal Insulation Performance of Cement-based Composite
WANG Chenghai1,2, HAN Changbao1,*, CUI Yanan2, YAN Hui1, JIANG Quan3
1 College of Materials Science& Engineering, Beijing University of Technology, Beijing 100124, China
2 Langgu (Beijing) New Material Technology Co., Ltd., Beijing 102600, China
3 China Testing & Certification International Group Co., Ltd., Beijing 100024, China
下载:  全 文 ( PDF ) ( 34086KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 水泥基保温材料凭借其优异的防火、耐久性和低成本等优势已在建筑行业得到广泛应用,然而导热系数高、保温性能差成为制约其应用的瓶颈问题,开发具有低导热系数的新型水泥基保温材料对建筑节能意义重大。水化硅酸钙是一种重要的水泥水化产物,其孔隙率高且比表面积大,保温隔热性能优异,因而对水泥材料中的水化硅酸钙性能及比例进行调控,是提升保温隔热性能的一种潜在途径。以Na2SiO3和Ca(OH)2为原材料,采用常压水热法合成水化硅酸钙,通过对Na2SiO3模数的调控,获得具有高比表面积、高孔隙率和低导热系数的水化硅酸钙,并将水化硅酸钙作为筑孔剂对水泥基材料进行结构调控。结果表明,当Na2SiO3模数为1.0时,所制备水化硅酸钙的孔隙率达93.56%,比表面积为236.45 g/m2,平均孔径为12.52 nm(远低于空气分子自由程69 nm),导热系数低至0.0513 W/(m·K)。随着水化硅酸钙掺量的提高,水泥基材料的干密度从1 690 kg/m3下降至765 kg/m3;孔隙率从33.3%升高至64.7%,平均孔径从2 826.1 nm下降至421.3 nm,这说明水化硅酸钙向水泥基材料中引入了大量纳米孔,进而提高了材料孔隙率。添加不同比例的水化硅酸钙后,水泥基材料的导热系数从0.391 W/(m·K)下降至0.122 W/(m·K),降幅达68.8%;红外成像也表明,水化硅酸钙改性水泥基材料表现出更优异的隔热效果。由于水化硅酸钙向水泥基材料中引入大量微纳米孔,导致热传导路径大大延长,提升了材料的热阻隔能力,从而大幅改善其保温隔热性能。本研究成果可为提高水泥基材料的保温性能提供新的思路和方法。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王成海
韩昌报
崔雅楠
严辉
蒋荃
关键词:  水化硅酸钙  水热法合成  水泥基复合材料  保温隔热  节能降耗    
Abstract: Cement-based thermal insulation materials have been widely used in construction industry because of their excellent fire prevention, good durability and low-cost, but high thermal conductivity and poor thermal insulation performance have become a bottleneck problems restricting their application. It is of great significant to developing a new cement-based thermal insulation material with low thermal conductivity for energy conservation. Calcium silicate hydrate (CSH) is an important hydration product of cement; it has high porosity, large specific surface area and excellent thermal insulation performance. Therefore, regulating the property and proportion of CSH in cement is a potential way to improve thermal insulation performance. Herein, Na2SiO3 and Ca(OH)2 were used as the main raw materials to synthesize calcium silicate hydrate (CSH) by hydrothermal method. CSH with high specific surface area, high porosity and low thermal conductivity was obtained by adjusting the modulus of Na2SiO3. Then the CSH was used as pore building agent to regulate the structure of cement-based materials and improve thermal insulation performance. The results show that when the modulus of Na2SiO3 is 1.0, the porosity of the CSH prepared is 93.56%, the specific surface area is 236.45 g/m2, the average pore size is 12.52 nm (which is much lower than the free path of air molecules 69 nm), and the thermal conductivity is as low as 0.051 3 W/(m·K). With the increase of CSH addition, the dry density of cement-based materials decreased from 1 690 kg/m3 to 765 kg/m3, the porosity increased from 33.3% to 64.7%, and the average pore size decreased from 2 826.1 nm to 421.3 nm, which indicates that CSH introduced a large number of nanopores into the cement-based material, thereby improving the porosity and refining the pore size. The thermal conductivity of cement-based materials decreased by 68.8% from 0.391 W/(m·K) to 0.122 W/(m·K) with the adding of CSH. The infrared imaging test also showed that the cement-based materials modified by CSH show better thermal insulation property. CSH introduces a large number of micropores and nanopores into the cement-based material, resulting in greatly extended heat conduction path, improving the thermal barrier ability of the material, and thus significantly improving its thermal insulation performance. These findings may provide a new idea and method for improving the thermal insulation performance of cement-based materials.
Key words:  calcium silicate hydrate (CSH)    hydrothermal synthesis    cement-based composite    thermal insulation    energy conservation
出版日期:  2025-07-10      发布日期:  2025-07-21
ZTFLH:  TU55+1  
基金资助: 山东省科技型企业创新能力提升工程(2023TSGC0422)
通讯作者:  *韩昌报,博士,北京工业大学教授、博士研究生导师。主要从事纳米材料制备及其在光电子器件、能源与环境等领域的基础和应用研究。cbhan@bjut.edu.cn   
作者简介:  王成海,高级工程师,北京工业大学在读博士研究生,主要研究领域为非金属材料、保温隔热材料等。
引用本文:    
王成海, 韩昌报, 崔雅楠, 严辉, 蒋荃. 高孔隙率水化硅酸钙的合成及对水泥基复合材料保温隔热性能的影响[J]. 材料导报, 2025, 39(13): 24060010-7.
WANG Chenghai, HAN Changbao, CUI Yanan, YAN Hui, JIANG Quan. Synthesis of Calcium Silicate Hydrate with High Porosity and Its Effect on Thermal Insulation Performance of Cement-based Composite. Materials Reports, 2025, 39(13): 24060010-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24060010  或          https://www.mater-rep.com/CN/Y2025/V39/I13/24060010
1 Jia G, Li Z. Construction and Building Materials, 2021, 273, 121728.
2 Zhang Z, Li B, Wang Z, et al. Journal of Building Engineering, 2023, 65, 105698.
3 Chen Gonglian. Materials, 2021, 14(2), 339.
4 Ramli Mahyuddin, Amin Akhavan Tabassi, Kwan Wai Hoe. Composites Part B:Engineering, 2013, 55, 221.
5 Jaya Nur Ain. Construction and Building Materials, 2020, 247, 118641.
6 Li Duanle, Dongmin Wang, Yong Cui. Journal of Thermal Analysis and Calorimetry, 2022, 147, 1061.
7 Machrafi Hatim, Georgy Lebon. Physics Letters A, 2015, 379(12-13), 968.
8 Zhang D, Ding S, Ma Y, et al. Materials, 2022, 15, 6287.
9 Hou L, Li J, Lu Z, et al. Construction and Building Materials, 2021, 280, 122399.
10 Chen B, Liu N. Construction and Building Materials, 2013, 44, 691.
11 Adhikary S K, Rudžionis Ž, Tučkutė S. Case Studies in Construction Materials, 2022, 16, e00879.
12 Shah S N, Mo K H, Yap S P, et al. Journal of Building Engineering, 2021, 44, 103227.
13 Xu Y, Tong S, Xu X, et al. Journal of Building Engineering, 2023, 73, 106822.
14 Chen J, Chen B, Chen X, et al. Construction and Building Materials, 2023, 362, 129748.
15 Xiao M, Li F, Yang P, et al. Journal of Building Engineering, 2023, 71, 106500.
16 Shi G, Liu T, Li G, et al. Journal of Cleaner Production, 2021, 279, 123420.
17 Shi J, Zhao L, Zhang Y, et al. Polymers, 2022, 14(23), 5229.
18 Dixit A, Dai P S, Kang S H, et al. Cement and Concrete Composites, 2019, 102, 185.
19 Sayadi A A, Tapia J V, Neitzert T R, et al. Construction and Building Materials, 2016, 112, 716.
20 Cheng C, Hong S, Zhang Y, et al. Construction and Building Materials, 2020, 265, 120328.
21 Jiang T, Wang Y, Shi S, et al. Case Studies in Construction Materials, 2022, 17, e01557.
22 Adhikary S K, Ashish D K, Rudžionis Ž. Energy and Buildings, 2021, 245, 111058.
23 Pedroso M, Flores-Colen I, Silvestre J D, et al. Energy and Buildings, 2020, 211, 109793.
24 Jiang T, Wang Y, Shi S, et al. Case Studies in Construction Materials, 2022, 17, e01557.
25 Shah S N, Mo K H, Yap S P, et al. Construction and Building Materials, 2021, 290, 123229.
26 He Y L, Xie T. Applied Thermal Engineering, 2015, 81, 28.
27 Li C, Chen Z, Dong W, et al. Journal of Non-Crystalline Solids, 2021, 553, 120517.
28 Du F, Zhu W, Yang R, et al. Advanced Science, 2023, 10, 2370115.
29 Shah S N, Mo K H. Journal of Building Engineering, 2021, 44, 103227.
30 Yang W, Wang Y, Liu J. Construction and Building Materials, 2022, 332, 127380.
31 Saleh A N, Attar A A, Ahmed D K,et al. Results in Engineering, 2021, 12, 100303.
32 Lu J, Jiang J, Lu Z, et al. Construction and Building Materials, 2021, 299, 123966.
33 Lamy-Mendes A, Pontinha A D R, Alves P,et al. Construction and Building Materials, 2021, 286(7), 122815.
34 Zhu P, Brunner S, Zhao S, et al. Cement and Concrete Composites, 2019, 104, 103414.
35 Adhikary S K, Rudžionis Ž, Tučkute S. Case Studies in Construction Materials, 2022, 16, e00879.
36 Wang X, Feng J, Wang J Y, et al. Construction and Building Materials, 2023, 367, 130254.
37 Liu S, Zhu K, Cui S, et al. Energy and Buildings, 2018, 177, 385.
38 Kunther W, Ferreiro S, Skibsted J. Journal of Materials Chemistry A, 2017, 33, 17401.
39 Richardson I G. Cement and Concrete Research, 2008, 38, 137.
40 Zheng Q, Jiang J, Yu J, et al. ACS Sustainable Chemistry & Engineering, 2020, 8, 2622.
41 Zhu Z, Wang Z, Zhou Y, et al. Construction and Building Materials, 2021, 267, 120731.
42 Foley E M, Kim J J, Taha M R. Cement and Concrete Research, 2012, 42(9), 1225.
43 Ma Y, Li W, Jin M, et al. Journal of Building Engineering, 2022, 58, 105017.
44 Johnston J H, Borrmann T, Rankin D, et al. Current Applied Physics, 2008, 8(3-4), 504.
45 Wenzel O, Schwotzer M, Müller E, et al. Materials Characterization, 2017, 133, 133.
46 L’Hôpital E, Lothenbach B, Kulik D A, et al. Cement and Concrete Research, 2016, 85, 111.
47 Bouquerel M, Duforestel T, Baillis D, et al. Energy and Buildings, 2012, 54, 320.
48 Rostami J, Khandel O, Sedighardekani R, et al. Journal of Cleaner Production, 2021, 297, 126518.
49 Luo H, Xiong G, Li Q, et al. Fibers and Polymers, 2014, 15, 2591.
50 Kearsley E P, Wainwright P J. Cement and Concrete Research, 2001, 31, 805.
51 Cao Deguang, Su Dagen, Song Guosheng. Journal of the Chinese Ceramic Society, 2004, 32(8), 1036 (in Chinese).
曹德光, 苏达根, 宋国胜. 硅酸盐学报, 2004, 32(8), 1036.
52 Lian Xuan, Peng Zhihong, Shen Leiting, et al. Journal of Central South University (Science and Technology), 2024, 55(4), 1281 (in Chinese).
连选, 彭志宏, 申雷霆, 等. 中南大学学报(自然科学版), 2024, 55(4), 1281.
53 Xu Jing, Zhao Yongqi, Xu Chengqiang, et al. Silicate Bulletin, 2022, 41(10), 3667 (in Chinese).
徐静, 赵永奇, 徐成强, 等. 硅酸盐通报, 2022, 41(10), 3667.
54 Wiener M, Reichenauer G, Braxmeier S, et al. International journal of Thermophysics, 2009, 30, 1372.
55 Yu H, Tong Z, Zhang B, et al. Chemical Engineering Journal, 2021, 418, 129342.
56 Feng J, Wang Y, Feng X, et al. Applied Thermal Engineering, 2016, 105, 39.
[1] 刘凤利, 袁壮, 刘俊华, 田嘉静, 王亚光. 蒸压养护制度对电石渣-花岗岩石粉基加气混凝土性能的影响[J]. 材料导报, 2025, 39(10): 24020026-6.
[2] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[3] 龙武剑, 余阳, 何闯, 李雪琪, 熊琛, 冯甘霖. 纳米增强水泥基复合材料抗氯离子迁移及固化性能综述[J]. 材料导报, 2024, 38(7): 22090138-10.
[4] 童涛涛, 李宗利, 刘士达, 张晨晨, 金鹏. 从纳米水化硅酸钙到水泥净浆弹性性能多尺度递推模型[J]. 材料导报, 2024, 38(7): 22120188-8.
[5] 马超, 解帅, 王永超, 冀志江, 吴子豪, 王静. 用于红外和雷达波隐身的水泥基复合材料[J]. 材料导报, 2024, 38(5): 23080165-9.
[6] 成鑫磊, 穆锐, 孙涛, 刘元雪, 胡志德, 蒋昊洋. 固液相变材料的封装制备及在建筑领域的研究进展[J]. 材料导报, 2024, 38(5): 23080048-15.
[7] 康迎杰, 郭自利, 叶斌斌, 潘鹏. ECC全包裹普通混凝土复合试件的力学性能[J]. 材料导报, 2024, 38(3): 22050021-6.
[8] 王照耀, 梁兴文, 翟天文, 王莹, 吴奎. 钢-PVA混杂纤维增强水泥基复合材料永久模板叠合RC单向板短期刚度计算方法[J]. 材料导报, 2024, 38(3): 22060083-9.
[9] 李杰, 胡祖明, 于俊荣, 王彦, 诸静. 聚对苯二甲酰对苯二胺气凝胶纤维的制备与性能[J]. 材料导报, 2024, 38(2): 22080102-6.
[10] 秦煜, 王亭, 辛景舟, 汤喻杰, 王威娜. 形状记忆合金增强水泥基复合材料及其构件研究进展[J]. 材料导报, 2024, 38(19): 23060190-9.
[11] 穆锐, 刘元雪, 欧忠文, 胡志德, 姚未来, 成鑫磊, 雷屹欣, 杨秀明. 气凝胶复合材料的制备及保温隔热应用进展[J]. 材料导报, 2024, 38(14): 22110298-14.
[12] 张立卿, 余家乐, 王云洋, 韩宝国, 陈梦成, 许开成. 渗透结晶水泥基复合材料研究综述[J]. 材料导报, 2024, 38(13): 22100014-16.
[13] 吴伟喆, 刘阳, 张艺欣, 黄建山, 闫国威. 冻融环境下FRCC孔隙结构与力学性能研究综述[J]. 材料导报, 2023, 37(S1): 23010108-12.
[14] 唐芮枫, 张佳乐, 王子明, 崔素萍, 王肇嘉, 兰明章. C-S-H纳米晶种及其对水泥水化硬化的促进作用综述[J]. 材料导报, 2023, 37(9): 21090259-16.
[15] 王晓楠, 冯德成. 纳米碳/水泥基复合材料研究进展[J]. 材料导报, 2023, 37(21): 22030088-16.
[1] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[2] LIU Shuaiyang, WANG Aiqin, LYU Shijing, TIAN Hanwei. Interfacial Properties and Further Processing of Cu/Al Laminated Composite: a Review[J]. Materials Reports, 2018, 32(5): 828 -835 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] CAO Xiuzhong, ZHAO Bing, HAN Xiuquan, HOU Hongliang, QU Haitao. Research on Deformation Mechanism of SiC Fiber Reinforced Titanium Matrix Composites Subjected to High Temperature Axial Tension[J]. Materials Reports, 2017, 31(8): 88 -93 .
[5] ZHANG Jiaqing, ZHANG Bosi, WANG Liufang, FAN Minghao, XIE Hui, LI Wei. The State of the Art of Combustion Behavior of Live Wires and Cables[J]. Materials Reports, 2017, 31(15): 1 -9 .
[6] LI Xueyun, WANG Hezhong. Optimization and Characterization of TEMPO-Mediated Oxidization of Nanochitin Whiskers[J]. Materials Reports, 2018, 32(10): 1597 -1601 .
[7] LI Beigang, WANG Min. High Efficient Adsorption of Dyes by Fe/CTS/AFA Composite[J]. Materials Reports, 2018, 32(10): 1606 -1611 .
[8] ZHAO Qingchen, WANG Jinlong, ZHANG Yuanliang, SHEN Yihong, LIU Shujie. Fatigue Behavior and Fatigue Life for FV520B-I at Different Loading Frequencies[J]. Materials Reports, 2018, 32(16): 2837 -2841 .
[9] ZHOU Chao, WANG Hui, OUYANG Liuzhang, ZHU Min. The State of the Art of Hydrogen Storage Materials for High-pressure Hybrid Hydrogen Vessel[J]. Materials Reports, 2019, 33(1): 117 -126 .
[10] WANG Huifen, LIU Gang, CAO Kangli, YANG Biqi, XU Jun, LAN Shaofei, ZHANG Lixin. Development Status of Carbon Nanotube Materials and Their Application Prospects in Spacecraft[J]. Materials Reports, 2019, 33(z1): 78 -83 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed